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0 Introduction

This document is intended to define the standard reference systems realized
by the International Earth Rotation and Reference Systems Service (IERS)
and the models and procedures used for this purpose. It is a continuation
of the series of documents begun with the Project MERIT (Monitor Earth
Rotation and Intercompare the Techniques) Standards (Melbourne et al.,
1983) and continued with the IERS Standards (McCarthy, 1989; McCarthy,
1992) and IERS Conventions (McCarthy, 1996; McCarthy and Petit, 2004).
The current issue of the IERS Conventions is called the IERS Conventions
(2010).
The reference systems and procedures of the IERS are based on the reso-
lutions of international scientific unions. The celestial system is based on
IAU (International Astronomical Union) Resolution A4 (1991). It was offi-
cially initiated and named International Celestial Reference System (ICRS)
by IAU Resolution B2 (1997) and its definition was further refined by IAU
Resolution B1 (2000) and by IAU Resolution B3 (2009). The terrestrial
system is based on IUGG (International Union of Geodesy and Geophysics)
Resolution 2 (1991). It was officially endorsed as the International Terres-
trial Reference System (ITRS) by IUGG Resolution 2 (2007). The transfor-
mation between celestial and terrestrial systems is based on IAU Resolution
B1 (2000) and was complemented by IAU Resolutions B1 and B2 (2006).
The definition of time coordinates and time transformations, the models for
light propagation and the motion of massive bodies are based on IAU Res-
olution A4 (1991), further refined by IAU Resolution B1 (2000) and IAU
Resolution B3 (2006). In some cases, the procedures used by the IERS, and
the resulting conventional frames produced by the IERS, do not completely
follow these resolutions. These cases are identified in this document and
procedures to obtain results consistent with the resolutions are indicated.
Following IAU resolutions, the IERS reference systems are defined in the
framework of the General Relativity Theory (GRT). In a few cases, models
are expressed in the parameterized post-Newtonian (PPN) formalism using
parameters β and γ (equal to 1 in GRT). These cases are identified with a
note.
The units of length, mass, and time are in the International System of Units
(Le Système International d’Unités (SI), 2006) as expressed by the meter
(m), kilogram (kg) and second (s). The astronomical unit of time is the
day containing 86400 SI seconds. The Julian century contains 36525 days
and is represented by the symbol c. When possible, the notations in this
document have been made consistent with ISO Standard 80000 on quanti-
ties and units. The numerical standards in Table 1.1 have been revised in
order to conform to the new IAU (2009) System of Astronomical Constants
adopted with IAU Resolution B2 (2009; cf. Appendix D.1).
The basis for this edition was set at an IERS Workshop on Conventions,
held on September 20-21 2007 at the Bureau International des Poids et
Mesures in Sèvres (France). This document and the associated information
(e.g. software) essentially follow the recommendations specified in the ex-
ecutive summary of the workshop <1>. All electronic files associated with
the IERS Conventions (2010) may be found on identical web pages main-
tained at the BIPM 2 (this pages will be referenced in this document) and
at the USNO 3. The recommended models, procedures and constants used
by the IERS follow the research developments and the recommendations
of international scientific unions. When needed, updates to this edition of
the Conventions will be available electronically at the IERS Conventions
Center website <4>. The principal changes between this edition and the
IERS Conventions (2003) are listed in Section 0.2 below.

1http://www.bipm.org/utils/en/events/iers/workshop summary.pdf
2http://tai.bipm.org/iers/conv2010 and ftp://tai.bipm.org/iers/conv2010
3http://maia.usno.navy.mil/conv2010 and ftp://maia.usno.navy.mil/conv2010
4http://tai.bipm.org/iers/convupdt/convupdt.html
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0.1 Models in the IERS Conventions

This section provides guidelines and criteria for models included in the IERS
Conventions and for their usage in generating IERS reference products. All
of the contributions used for generating IERS reference products should be
consistent with the description in this document. If contributors to the IERS
do not fully comply with these guidelines, they should carefully identify the
exceptions. In these cases, the contributor provides an assessment of the
effects of the departures from the conventions so that his/her results can
be referred to the IERS Reference Systems. Contributors may use models
equivalent to those specified herein if they assess the equivalence.

0.1.1 Classification of models

Models to represent physical effects can be classified into three categories:

Class 1 (“reduction”) models are those recommended to be used a priori
in the reduction of raw space geodetic data in order to determine geodetic
parameter estimates, the results of which are then subject to further combi-
nation and geophysical analysis. The Class 1 models are accepted as known
a priori and are not adjusted in the data analysis. Therefore their accuracy
is expected to be at least as good as the geodetic data (1 mm or better).
Class 1 models are usually derived from geophysical theories. Apart from
a few rare exceptions, the models and their numerical constants should be
based on developments that are fully independent of the geodetic analyses
and results that depend on them. Whenever possible, they should prefer-
ably be in closed-form expressions for ease of use, and their implementation
should be flexible enough to allow testing alternate realizations, if needed.
A good example is the solid Earth tide model for station displacements (see
Chapter 7).

Class 2 (“conventional”) models are those that eliminate an observational
singularity and are purely conventional in nature. This includes many of the
physical constants. Other examples are the ITRF rotational datum, speci-
fying the rotation origin and the rotation rate of the ITRF (see Chapter 4).
As indicated by their name, Class 2 models may be purely conventional
or the convention may be to realize a physical condition. When needed,
choices among possible conventions are guided by Union resolutions and
historic practice, which may differ in some cases.

Class 3 (“useful”) models are those that are not required as either Class 1 or
2. This includes, for instance, the zonal tidal variations of UT1/LOD (see
Chapter 8), as an accurate zonal tide model is not absolutely required in
data analysis though it can be helpful and is very often used internally in a
remove/restore approach. In addition, such a model is very much needed to
interpret geodetic LOD results in comparisons with geophysical excitation
processes, for instance. Class 3 also includes models which cannot (yet)
fulfill the requirements for Class 1 such as accuracy or independence of
geodetic results, but are useful or necessary to study the physical processes
involved.

In the external exchange of geodetic results for the generation of IERS
products, all Class 1 effects and specified Class 2 effects should be included,
i.e. the models should be removed from the observational estimates. On
the other hand, Class 3 effects should never be included in generating such
results.

As much as possible, the documentation of the software provided by the
IERS Conventions Center indicates the class associated with the model.

0.1.2 Criteria for choosing models

The IERS Conventions intend to present a complete and consistent set of the
necessary models of the Class 1 and Class 2 types, including implemented
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software. Where conventional choices must be made (Class 2), the Conven-
tions provide a unique set of selections to avoid ambiguities among users.
The resolutions of the international scientific unions and historical geodetic
practice provide guidance when equally valid choices are available. Class 3
models are included when their use is likely to be sufficiently common, as a
guidance to users.

For station displacement contributions (Chapter 7), the Conventions clearly
distinguish models which are to be used in the generation of the official IERS
products from other (Class 3) models. Models in the first category, used
to generate the IERS realization of the celestial and terrestrial reference
systems and of the transformation between them, are referred to as “con-
ventional displacement contributions.” Conventional displacement contribu-
tions include Class 1 models (essential and geophysically based) that cover
the complete range of daily and sub-daily variations, including all tidal ef-
fects, and other accurately modeled effects (mostly at longer periods). They
relate the regularized positions of reference markers on the crust to their
conventional instantaneous positions (see Chapter 4) and are described in
Section 7.1. In addition, models for technique-specific effects, described in
Section 7.3, relate the positions of reference markers to the reference points
of instruments.

0.2 Differences between this document and IERS Technical Note 32

The structure of the IERS Conventions (2003) has been retained in this
document, but the titles of some chapters have been changed, as indicated.
Authors and major contributors of the previous (2003) version of the chap-
ters may be found in the introduction to the Conventions (2003). The most
significant changes from the previous version are outlined below for each
chapter, along with the major contributors to the changes. These changes
are also indicated in two tables that present the realization of reference
frames and their accuracy estimates (Table 0.1) and the models along with
estimates of the magnitude of the effects (Table 0.2).

The IERS Conventions are one of the products of the IERS Conventions
Center. However, this volume would not be possible without the contri-
butions acknowledged below for each chapter. In addition, we would also
like to acknowledge the work of the Advisory Board for the IERS Conven-
tions update, that was set up in 2005 under the chairmanship of Jim Ray
to advise the Conventions Center in its work of updating the Conventions,
with members representing all components of the IERS. Among those, spe-
cial thanks are due to Ralf Schmid for providing detailed comments and
corrections to nearly all chapters in this volume.

Table 0.1: Estimates of accuracy of reference frames

Ch. Reference frame Conventions
2003

Conventions
2010

Accuracy & difference/improvement between Con-
ventions

2 celestial reference
system & frame

ICRF-Ext.1 ICRF-2 Noise floor ≈ 40 µas (5 times better than ICRF-
Ext.1). Axis stability ≈ 10 µas (twice as stable as
ICRF-Ext.1). From 717 to 3414 total objects; from
212 to 295 “defining” sources

3 dynamical realiza-
tion of ICRS

DE405 DE421 From 1 mas to 0.25 mas for alignment to ICRF

4 terrestrial refer-
ence system &
frame

ITRF2000 ITRF2008 Accuracy over 1985-2008: 1 cm in origin, 1.2 ppb
in scale. Most important systematic difference vs.
ITRF2000: drift in z-direction by 1.8 mm/yr.
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Table 0.2: Models of the Conventions (2010): some information on the magnitude of effects and
changes vs. Conventions (2003). Sec. indicates the section number in this document; Cl. stands for
Class (see section 0.1.1).

Sec.
Cl.

Phenomenon Amplitude of
effect

Conventions 2003 Conventions 2010 Accuracy &
difference/improvement
between Conventions

5 Transformation between the ITRS and GCRS

5.5.1 1 libration in
polar motion

tens of µas No specific
routine

Brzezinski
PMSDNUT2
model

Specific routine

5.5.3 1 libration in
the axial
component of
rotation

several µs in UT1 Not available Brzezinski &
Capitaine (2003)
UTLIBR model

New model

5.5.4 1 precession-
nutation of
the CIP

tens of as/yr and
tens of as for the
periodic part in
X and Y

IAU2000 PN IAU2006/2000
PN

100 µas/c. + 7 mas/c.2

in X; 500 µas/c. in Y

5.5.5 3 FCN Few hundred µas not available Lambert model Accuracy: 50 µas rms,
100 µas at one year
extrapolation

5.5.6 1 space motion
of the CIO

mas/c. IAU2000 PN IAU2006/2000
PN

no change larger than 1
µas after one century

6 Geopotential

6.1 1 Global
geopotential
model

10−3 of central
potential

EGM96 EGM2008; C20
and rates of low
degree coefs from
other sources

EGM96: degree and
order 360; EGM2008:
complete to degree and
order 2159; rate terms
for low degree coefs.

6.2 1 Solid Earth
tides

10−8 on C2m,
10−12 on C3m,
C4m

Eanes et al.,
1983; Mathews et
al., 2002

Unchanged No change

6.3 1 Ocean tides For LEO orbit
integration:
decimetric over 1
day

CSR 3.0 FES2004;
Treatment of
secondary waves
specified

Effect of new model for
LEO / MEO: few mm
over several days
integration; Treatment
of secondary waves for
LEO: 20% of total
effect

continued on next page
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6.4 1 Solid Earth
pole tide

10−9 on C21, S21 Centrifugal effect
vs. conventional
mean pole (2003)

Centrifugal effect
vs. conventional
mean pole (2010)

Change of conventional
mean pole: effect of a
few 10−11 on C21, S21

6.5 1 Ocean pole
tide

Few 10−11 on low
degree coefs

Not available Desai (2002) New model

7 Displacement of reference points

7.1.1 1 Solid Earth
tides

decimetric Conventional
routine from
Dehant &
Mathews

Unchanged No change

7.1.2 1 Ocean loading centimetric Loading response
from Scherneck
(several tide
models); no
conventional
implementation.

Loading response
from Scherneck
(several tide
models);
Implementation
by Agnew
software (342
constituent tides)

7.1.3 1 S1-S2
Atmospheric
pressure
loading

millimetric not available Implementation
of Ray & Ponte
(2003) by
vanDam

New model

7.1.4 1 Conventional
mean pole

Hundreds of mas linear model cubic model from
1976.0 until
2010.0; linear
model after
2010.0

tens of mas.

7.1.4 1 Pole tide 2 cm radial, few
mm tangential

Centrifugal effect
vs. conventional
mean pole (2003)

Centrifugal effect
vs. conventional
mean pole (2010)

Change of conventional
pole: effect may reach
1 mm

7.1.5 1 Ocean pole
tide loading

2 mm radial, <
1 mm tangential

Not available Desai (2002) New model

7.3.1 3 Reference
points of
instruments:
effect of
temperature
and pressure

∼ 1 mm Not specified Reference
temperature and
pressure: GPT
model, Boehm et
al. (2007)

Between using average
in situ temperature
measurements and
GPT: < 0.5 mm site
height change due to
antenna thermal
deformation

7.3.2 1 Thermal
deformation of
VLBI antenna

> 10 ps on VLBI
delay, several
mm variation in
coordinates

Nothnagel et al.
(1995)

Nothnagel (2009) Reference temperatures
defined according to
GPT model; reduction
in annual scale
variations of about
1 mm

continued on next page
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7.3.3 1 GNSS antenna
phase center
offsets and
variations

decimetric Not specified Schmid et al.
(2007)

10−9 on scale;
tropospheric zenith
delay and GPS orbit
consistency improved

8 Tidal variations in the Earth’s rotation

8.1 3 Zonal tides on
UT1

785 µs at Mf Defraigne and
Smits (1999) 62
terms

Combination of
Yoder et al.
(1981) elastic
body tide, Wahr
and Bergen
(1986) inelastic
body tide, and
Kantha et al.
(1998) ocean tide
models

6 µs at Mf

8.2 1 Subdaily tides ∼ 0.5 µas for PM
∼ 0.05 ms for
UT1

Ray et al.
(1994);
conventional
implementation
by Eanes

No change No change

8.3 3 long-period
tides, polar
motion

(pro-
grade,retrograde)
polar motion
amplitude of (66,
74) µas at Mf

Not available Dickman and
Nam (1995),
Dickman and
Gross (2009)

(prograde, retrograde)
polar motion amplitude
of (66, 74) µas at Mf

9 Models for atmospheric propagation delays

9.1 1 Troposphere;
optical

∼ 2.2 m at zenith
to ∼ 14 m at 10◦

above horizon

Marini and
Murray (1973)

Mendes and
Pavlis (2004)
zenith delay;
Mendes and
Pavlis (2003)
”Fcul” mapping
function (MF)

more accurate delays
below 20◦ elevation and
all the way to 3◦ above
horizon; accurate to ∼
7 mm (Total error due
to ZTD and MF)

9.2 1 Troposphere;
radio

Hydrostatic
zenith delays ∼
2.3 m Wet zenith
delays typically
∼ 10–150 mm

Several MF
e.g. Neill (1996)
or Lanyi (1984)

MF: VMF1
based on 6-hour
ECMWF data.
GMF based only
on latitude, site
height, time of
year (Boehm et
al., 2006)

Both VMF1 and GMF
remove
latitude-dependent
mapping function bias
(average ∼ 4 mm in site
height). VMF1 reduces
short-term vertical
scatter (average ∼
4–5 mm)

continued on next page
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9.2 1 Troposphere;
horizontal
gradients

can lead to
systematic errors
in the scale of
estimated TRF
at level of ∼ 1
ppb

Not available J. Boehm APG a
priori model

New model

9.4 1 Ionosphere;
radio: First
order term

can reach 100 ns
for GPS

Not available Sources for
Vertical TEC +
conventional
mapping function

New model

9.4 1 Ionosphere;
radio: Higher
order terms
for
dual-frequency

can reach 100 ps
for GPS; a few ps
for wide-band
VLBI

Not available Conventional
model based on
Slant TEC +
Magnetic field
model

New model

10 General relativistic models for spacetime coordinates and equations of motion

10.1 2 Time
coordinates

TCB, TDB in
barycentric;
TCG, TT in
geocentric

IAU1991-
IAU2000

IAU1991-
IAU2000;
IAU2006 TDB
definition

New TDB definition

10.1 1 TCB-TCG
transforma-
tion

1.5 ms annual; 2
µs diurnal on
Earth

FB2001; TE405;
HF2002

HF2002 IERS HF2002 IERS vs.
HF2002: 1.15× 10−16

in rate;

10.2 1 transforma-
tion between
proper time
and
coordinate
time near
Earth

GNSS: frequency
shift of ∼
4-5×10−10 +
periodic term of
several tens of ns

Not specified Conventional
GNSS model
specified;
Information on
next most
significant term.

New model

11 General relativistic models for propagation

11.1 1 VLBI delay tens of ms conventional
‘consensus’
model

no change Uncertainty of model:
1 ps

11.2 1 time of
propagation
for ranging
techniques

up to a few s conventional
model

no change Uncertainty of model:
3 ps

Chapter 1: General definitions and numerical standards

The section “Numerical standards” has been re-written and the list of constants
ensures consistency with the IAU (2009) system of astronomical constants. It is
derived mostly from the work of the IAU Working Group on Numerical Standards
of Fundamental Astronomy, headed by B. Luzum.

Chapter 2: Conventional celestial reference system and frame

This chapter has been rewritten to present the second realization of the ICRF,
following the work of the IAU working group with the same name, headed by C.
Ma. The primary contributors are E. F. Arias, S. Bouquillon, A. Fey, G. Francou
and N. Zacharias.
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Chapter 3: Conventional dynamical realization of the ICRS

The chapter has been re-written (with W. M. Folkner as the primary contributor)
and provides information on recently released ephemerides. When a conventional
choice is needed, DE421 is recommended to provide continuity for implementation
by users.

Chapter 4: Terrestrial reference systems and frames

The chapter (with a new title) has been significantly rewritten with Z. Altamimi
and C. Boucher as the primary authors. It incorporates the new realization
ITRF2008, which was introduced in 2010.

Chapter 5: Transformation between the International Terrestrial Reference
System and Geocentric Celestial Reference System

The chapter (with a new title) has been significantly rewritten, with N. Capitaine
and P. Wallace as the primary authors, in order to make the chapter compli-
ant with the IAU 2000/2006 resolutions and the corresponding terminology. A
presentation of the IAU 2006 resolutions has been added, and a description of
the models, procedures and software to implement the IAU 2000/2006 resolutions
has been included. The organization of the chapter has been modified in order
to clarify the successive steps to be followed in the coordinate transformation.
Additional contributors include A. Brzeziński, G. Kaplan and S. Lambert.

Chapter 6: Geopotential

A new conventional geopotential model based on EGM2008 is presented. The
section on ocean tides has been rewritten and a new section describes the oceanic
pole tide. The primary contributors are S. Bettadpur, R. Biancale, J. Chen, S.
Desai, F. Flechtner, F. Lemoine, N. Pavlis, J. Ray and J. Ries.

Chapter 7: Displacement of reference points

A new conventional mean pole model, to be referenced as the IERS (2010) mean
pole model, is given consistently with Chapter 6. The section on ocean loading
has been rewritten and new sections describe the oceanic pole tide loading and
the S1-S2 atmospheric loading. The section “Models for the displacement of refer-
ence points of instruments” has been updated: It contains models for a reference
temperature, the thermal expansion of VLBI antennas and GNSS antenna phase
center offsets and variations. The primary contributors are D. Agnew, J. Boehm,
M. Bos, T. van Dam, S. Desai, D. Gambis, A. Nothnagel, G. Petit, J. Ray, H.-G.
Scherneck, R. Schmid, and J. Wahr.

Chapter 8: Tidal variations in the Earth’s rotation

The model to evaluate the effects of zonal Earth tides on the Earth’s rotation has
been updated, with software included, and a model to evaluate tidal variations in
polar motion and polar motion excitation due to long period ocean tides has been
added. The primary contributors are C. Bizouard and R. Gross.

Chapter 9: Models for atmospheric propagation delays

This chapter (with a new title) has been completely rewritten. The models for
tropospheric delay have been updated and a new section “Ionospheric models for
radio techniques” has been added. The primary contributors are J. Boehm, M.
Hernández Pajares, U. Hugentobler, G. Hulley, F. Mercier, A. Niell, and E. Pavlis.
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Chapter 10: General relativistic models for space-time coordinates and
equations of motion

The chapter has been updated following IAU Resolution B3 (2006) and the new
description of the relations between time scales. A new section “Transformation
between proper time and coordinate time in the vicinity of the Earth” and numer-
ical examples have been added. The primary contributors are U. Hugentobler, J.
Kouba, S. Klioner, R. Nelson, G. Petit, J. Ray, and J. Ries.

Chapter 11: General relativistic models for propagation

The chapter has been updated for minor wording corrections.

0.3 Conventions Center

At the time of this edition, the IERS Conventions Center is composed of E. F. Arias,
B. Luzum, D. D. McCarthy, G. Petit and B. E. Stetzler. P. Wolf has also con-
tributed over past years.
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1 General definitions and numerical standards

This chapter provides definitions for some topics that are relevant to several chap-
ters of the document, such as the tide systems in Section 1.1 and the units of rela-
tivistic time scales and associated quantities in Section 1.2. The latter section also
provides the values of numerical standards that are used in the document. Those
are based on the most recent reports of the appropriate working groups of the
International Association of Geodesy (IAG) and the International Astronomical
Union (IAU) which can be found in the references below Table 1.1.

1.1 Permanent tide

Some geodetic parameters are affected by tidal variations. The gravitational po-
tential in the vicinity of the Earth, which is directly accessible to observation, is
a combination of the tidal gravitational potential of external bodies (the Moon,
the Sun, and the planets) and the Earth’s own potential which is perturbed by
the action of the tidal potential. The (external) tidal potential contains both
time-independent (permanent) and time-dependent (periodic) parts, and so does
the tide-induced part of the Earth’s own potential. Similarly, the observed site
positions are affected by displacements associated with solid Earth deformations
produced by the tidal potential; these displacements also include permanent and
time-dependent parts. Removing the time-dependent part of the tidal contribu-
tions from the observed site positions/potential, the resulting station positions
are on the “mean tide” (or simply “mean”) crust; and the potential which results
is the “mean tide” potential. The permanent part of the deformation produced
by the tidal potential is present in the mean crust; the associated permanent
change in the geopotential, and also the permanent part of the tidal potential,
are included in the mean tide geopotential. These correspond to the actual mean
values, free of periodic variations due to tidal forces. The “mean tide” geoid,
for example, would correspond to the mean ocean surface in the absence of non-
gravitational disturbances (currents, winds). In general, quantities referred to as
“mean tide” (e.g. flattening, dynamical form factor, equatorial radius, etc.) are
defined in relation to the mean tide crust or the mean tide geoid.

If the deformation due to the permanent part of the tidal potential is removed
from the mean tide crust, the result is the “tide free” crust. Regarding the poten-
tial, removal of the permanent part of the external potential from the mean tide
potential results in the “zero tide” potential which is strictly a geopotential. The
permanent part of the deformation-related contribution is still present; if that is
also removed, the result is the “tide free” geopotential. It is important to note
that unlike the case of the potential, the term “zero tide” as applied to the crust
is synonymous with “mean tide.”

In a “tide free” quantity, the total tidal effects have been removed with a model.
Because the perturbing bodies are always present, a truly “tide free” quantity
is unobservable. In this document, the tidal models used for the geopotential
(Chapter 6) and for the displacement of points on the crust (Chapter 7) are based
on nominal Love numbers; the reference geopotential model and the terrestrial
reference frame, which are obtained by removal of tidal contributions using such
models, are termed “conventional tide free.” Because the deformational response
to the permanent part of the tide generating potential is characterized actually by
the secular (or fluid limit) Love numbers (Munk and MacDonald, 1960; Lambeck,
1980), which differ substantially from the nominal ones, “conventional tide free”
values of quantities do not correspond to truly tide free values that would be
observed if tidal perturbations were absent. The true effect of the permanent tide
could be estimated using the fluid limit Love numbers for this purpose, but this
calculation is not included in this document because it is not needed for the tidal
correction procedure.

Resolution 16 of the 18th General Assembly of the IAG (1984), “recognizing the
need for the uniform treatment of tidal corrections to various geodetic quantities
such as gravity and station positions,” recommended that “the indirect effect
due to the permanent yielding of the Earth be not removed,” i.e. recommends
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the use of “zero-tide” values for quantities associated with the geopotential and
“mean-tide” values for quantities associated with station displacements. This
recommendation, however, has not been implemented in the algorithms used for
tide modeling by the geodesy community in the analysis of space geodetic data
in general. As a consequence, the station coordinates that go with such analyses
(see Chapter 4) are “conventional tide free” values.

The geopotential can be realized in three different cases (i.e., mean tide, zero tide
or tide free). For those parameters for which the difference is relevant, the values
given in Table 1.1 are “zero-tide” values, according to the IAG Resolution.

The different notions related to the treatment of the permanent tide are shown
pictorially in Figures 1.1 and 1.2.

TIDE FREE CRUST
(unobservable)

CONVENTIONAL
TIDE FREE CRUST

(ITRF)

Restoring deformation
due to permanent tide

using conventional
Love numbers

Removing total tidal
deformation using

conventional
Love numbers

Removing
deformation due to

the permanent
tide using the
“secular” or

“fluid limit” value
for the relevant
Love number

MEAN CRUST

INSTANTANEOUS
CRUST

(observed)

Figure 1.1: Treatment of observations to account for tidal deformations in terrestrial reference systems
(see Chapters 4 and 7).

1.2 Numerical standards

Table 1.1, that lists adopted numerical standards, is organized into 5 columns:
constant, value, uncertainty, reference, and description. Values of defining con-
stants are provided without an uncertainty. The IAU (2009) System of Astro-
nomical Constants (Luzum et al., 2010) is adopted for all astronomical constants
which do not appear in Table 1.1. Note that, except for defining constants, the
values correspond to best estimates which are valid at the time of this publication
and may be re-evaluated as needed. They should not be mistaken for conven-
tional values, such as those of the Geodetic Reference System GRS80 (Moritz,
2000) shown in Table 1.2, which are, for example, used to express geographic
coordinates (see Chapter 4).

Unless otherwise stated, the values in Table 1.1 are TCG-compatible or TCB-
compatible, i.e. they are consistent with the use of Geocentric Coordinate Time
TCG as a time coordinate for the geocentric system, and of Barycentric Coor-
dinate Time TCB for the barycentric system. Note that for astronomical con-
stants such as mass parameters GM of celestial bodies having the same value in
BCRS and GCRS, the formulations “TCB-compatible” and “TCG-compatible”
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TIDE FREE
GEOPOTENTIAL

(unobservable)

CONVENTIONAL
TIDE FREE

GEOPOTENTIAL
(e.g. EGM2008)

Restoring the
contribution of
the permanent

deformation
due to the tidal
potential using
conventional

Love numbers

Removing total tidal
effects using
conventional

Love numbers

Removing the
contribution of the

permanent
deformation

produced by the
tidal potential using

the “secular” or
“fluid limit” value

for the relevant
Love number

ZERO-TIDE
GEOPOTENTIAL

Restoring the
permanent part of the

tide generating
potential

MEAN TIDE
GEOPOTENTIAL

INSTANTANEOUS
GEOPOTENTIAL

(observed)

Figure 1.2: Treatment of observations to account for tidal effects in the geopotential (see Chapter 6).

are equivalent and the values may be called “unscaled” (Klioner et al., 2010).
In this document some quantities are also given by TT-compatible values, having
been determined using Terrestrial Time TT as a time coordinate for the geocentric
system. See Chapter 10 for further details on the transformations between time
scales and Chapter 3 for a discussion of the time scale used in the ephemerides.

Using SI units (Le Système International d’Unités (SI), 2006) for proper quanti-
ties, coordinate quantities may be obtained as TCB-compatible when using TCB
as coordinate time or as TDB-compatible when using Barycentric Dynamical Time
as a coordinate time (Klioner et al., 2010). The two coordinate times differ in rate
by (1 − LB), where LB is given in Table 1.1. Therefore a quantity x with the
dimension of time or length has a TCB-compatible value xTCB which differs from
its TDB-compatible value xTDB by

xTDB = xTCB × (1− LB).
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Table 1.1: IERS numerical standards.

Constant Value Uncertainty Ref. Description

Natural defining constants

c 299792458 ms−1 Defining [1] Speed of light

Auxiliary defining constants

k 1.720209895× 10−2 Defining [2] Gaussian gravitational constant

LG 6.969290134× 10−10 Defining [3] 1−d(TT)/d(TCG)

LB 1.550519768× 10−8 Defining [4] 1−d(TDB)/d(TCB)

TDB0 −6.55× 10−5 s Defining [4] TDB−TCB at JD 2443144.5 TAI

θ0 0.7790572732640 rev Defining [3] Earth Rotation Angle (ERA) at J2000.0

dθ/dt 1.00273781191135448 rev/UT1day Defining [3] Rate of advance of ERA

Natural measurable constant

G 6.67428× 10−11 m3kg−1s−2 6.7× 10−15 m3kg−1s−2 [1] Constant of gravitation

Body constants

GM�
# 1.32712442099× 1020 m3s−2 1× 1010 m3s−2 [5] Heliocentric gravitational constant

J2� 2.0× 10−7 (adopted for DE421) [5] Dynamical form factor of the Sun

µ 0.0123000371 4× 10−10 [6] Moon-Earth mass ratio

Earth constants

GM⊕
† 3.986004418× 1014 m3s−2 8× 105 m3s−2 [7] Geocentric gravitational constant

aE
†‡ 6378136.6 m 0.1 m [8] Equatorial radius of the Earth

J2⊕
‡ 1.0826359× 10−3 1× 10−10 [8] Dynamical form factor of the Earth

1/f‡ 298.25642 0.00001 [8] Flattening factor of the Earth

gE
†‡ 9.7803278 ms−2 1× 10−6 ms−2 [8] Mean equatorial gravity

W0 62636856.0 m2s−2 0.5 m2s−2 [8] Potential of the geoid

R0
† 6363672.6 m 0.1 m [8] Geopotential scale factor (GM⊕/W0)

H 3273795× 10−9 1× 10−9 [9] Dynamical flattening

Initial value at J2000.0

ε0 84381.406′′ 0.001′′ [4] Obliquity of the ecliptic at J2000.0

Other constants

au†† 1.49597870700× 1011 m 3 m [6] Astronomical unit

LC 1.48082686741× 10−8 2× 10−17 [3] Average value of 1−d(TCG)/d(TCB)

# TCB-compatible value, computed from the TDB-compatible value in [5].
† The value for GM⊕ is TCG-compatible. For aE , gE and R0 the difference between TCG-compatible and

TT-compatible is not relevant with respect to the uncertainty.
‡ The values for aE , 1/f , J2⊕ and gE are “zero tide” values (see the discussion in Section 1.1 above). Values

according to other conventions may be found in reference [8].
†† TDB-compatible value. An accepted definition for the TCB-compatible value of au is still under discussion.

[1] Mohr et al., 2008.

[2] Resolution adopted at the IAU XVI General Assembly (Müller and Jappel, 1977),
see http://www.iau.org/administration/resolutions/general assemblies/.

[3] Resolution adopted at the IAU XXIV General Assembly (Rickman, 2001),
see http://www.iau.org/administration/resolutions/general assemblies/.

[4] Resolution adopted at the IAU XXVI General Assembly (van der Hucht, 2008),
see http://www.iau.org/administration/resolutions/general assemblies/.

[5] Folkner et al., 2008.

[6] Pitjeva and Standish, 2009.

[7] Ries et al., 1992. Recent studies (Ries, 2007) indicate an uncertainty of 4× 105 m3s−2.

[8] Groten, 2004.

[9] Value and uncertainty consistent with the IAU2006/2000 precession-nutation model, see (Capitaine et
al., 2003).
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Table 1.2: Parameters of the Geodetic Reference System GRS80

Constant Value Description

GM⊕ 3.986005× 1014 m3s−2 Geocentric gravitational constant

aE 6378137 m Equatorial radius of the Earth

J2⊕ 1.08263× 10−3 Dynamical form factor

ω 7.292115× 10−5 rads−1 Nominal mean Earth’s angular velocity

1/f 298.257222101 Flattening factor of the Earth

Similarly, a TCG-compatible value xTCG differs from a TT-compatible value xTT
by

xTT = xTCG × (1− LG),

where LG is given in Table 1.1.

As an example, the TT-compatible geocentric gravitational constant is 3.986004415×
1014 m3s−2, as obtained from the above equation applied to the TCG-compatible
value from Table 1.1. It shall be used to compute orbits in a TT-compatible ref-
erence frame, see Chapter 6. Most ITRS realizations are given in TT-compatible
coordinates (except ITRF94, 96 and 97), see Chapter 4.
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2 Conventional celestial reference system and frame

The celestial reference system is based on a kinematical definition, yielding fixed
axis directions with respect to the distant matter of the universe. The system
is materialized by a celestial reference frame consisting of the precise coordinates
of extragalactic objects, mostly quasars, BL Lacertae (BL Lac) sources and a
few active galactic nuclei (AGNs), on the grounds that these sources are that far
away that their expected proper motions should be negligibly small. The current
positions are known to better than a milliarcsecond, the ultimate accuracy being
primarily limited by the structure instability of the sources in radio wavelengths.
A large amount of imaging data is available at the USNO Radio Reference Frame
Image Database <1> and at the Bordeaux VLBI Image Database <2>.

The IAU recommended in 1991 (21st IAU GA, Rec. VII, Resol. A4) that the origin
of the celestial reference system is to be at the barycenter of the solar system
and the directions of the axes should be fixed with respect to the quasars. This
recommendation further stipulates that the celestial reference system should have
its principal plane as close as possible to the mean equator at J2000.0 and that
the origin of this principal plane should be as close as possible to the dynamical
equinox of J2000.0. This system was prepared by the IERS and was adopted by
the IAU General Assembly in 1997 (23rd IAU GA, Resol. B2) under the name
of the International Celestial Reference System (ICRS). It officially replaced the
FK5 system on January 1, 1998, considering that all the conditions set up by the
1991 resolutions were fulfilled, including the availability of the Hipparcos optical
reference frame realizing the ICRS with an accuracy significantly better than the
FK5. Responsibilities for the maintenance of the system, the frame and its link
to the Hipparcos reference frame have been defined by the IAU in 2000 (24th IAU
GA, Resol. B1.1)

2.1 The ICRS

The necessity of keeping the reference directions fixed and the continuing im-
provement in the source coordinates requires regular maintenance of the frame.
Realizations of the IERS celestial reference frame have been computed every year
between 1989 and 1995 (see the IERS annual reports) keeping the same IERS
extragalactic celestial reference system. The number of defining sources has pro-
gressively grown from 23 in 1988 to 212 in 1995. Comparisons between successive
realizations of the IERS celestial reference system have shown that there were
small shifts of order 0.1 mas from year to year until the process converged to bet-
ter than 0.02 mas for the relative orientation between successive realizations after
1992. The IERS proposed that the 1995 version of the IERS system be taken as
the International Celestial Reference System (ICRS). This was formally accepted
by the IAU in 1997 and is described in Arias et al. (1995).

The process of maintenance of the system and improvement of the frame since its
first realization in 1995 resulted in an increase of the stability of the axes of the
system. The comparison between the latest two realizations of the ICRS, ICRF2
and ICRF-Ext.2, indicates that the axes of the ICRS are stable within 10 µas
(IERS, 2009).

2.1.1 Equator

The IAU recommendations call for the principal plane of the conventional refer-
ence system to be close to the mean equator at J2000.0. The VLBI observations
used to establish the extragalactic reference frame are also used to monitor the
motion of the celestial pole in the sky (precession and nutation). In this way, the
VLBI analyses provide corrections to the conventional IAU models for precession
and nutation (Lieske et al., 1977; Seidelmann, 1982) and accurate estimation of
the shift of the mean pole at J2000.0 relative to the Conventional Reference Pole
of the ICRS. Based on the VLBI solutions submitted to the IERS in 2001, the shift

1http://rorf.usno.navy.mil/RRFID
2http://www.obs.u-bordeaux1.fr/BVID/

21

http://rorf.usno.navy.mil/RRFID
http://www.obs.u-bordeaux1.fr/BVID/


N
o

.
3

6 IERS
Technical
Note

2 Conventional celestial reference system and frame

of the pole at J2000.0 relative to the ICRS celestial pole has been estimated by
using (a) the updated nutation model IERS (1996) and (b) the MHB2000 nutation
model (Mathews et al., 2002). The direction of the mean pole at J2000.0 in the
ICRS is +17.1 mas in the direction 12h and +5.0 mas in the direction 18h when
the IERS (1996) model is used, and +16.6 mas in the direction 12h and +6.8 mas
in the direction 18h when the MHB2000 model is adopted (IERS, 2001).

The IAU recommendations stipulate that the direction of the Conventional Ref-
erence Pole should be consistent with that of the FK5. The uncertainty in the
direction of the FK5 pole can be estimated (1) by considering that the systematic
part is dominated by a correction of about −0.30′′/c. to the precession constant
used in the construction of the FK5 system, and (2) by adopting Fricke’s (1982)
estimation of the accuracy of the FK5 equator (±0.02′′), and Schwan’s (1988)
estimation of the limit of the residual rotation (±0.07′′/c.), taking the epochs of
observations from Fricke et al. (1988). Assuming that the error in the precession
rate is absorbed by the proper motions of stars, the uncertainty in the FK5 pole
position relative to the mean pole at J2000.0 estimated in this way is ±50 mas.
The ICRS celestial pole is therefore consistent with that of the FK5 within the
uncertainty of the latter.

2.1.2 Origin of right ascension

The IAU recommends that the origin of right ascension of the ICRS be close to
the dynamical equinox at J2000.0. The x-axis of the IERS celestial system was
implicitly defined in its initial realization (Arias et al., 1988) by adopting the mean
right ascension of 23 radio sources in a group of catalogs that were compiled by
fixing the right ascension of the quasar 3C 273B to the usual (Hazard et al., 1971)
conventional FK5 value (12h29m6.6997s at J2000.0) (Kaplan et al., 1982).

The uncertainty of the determination of the FK5 origin of right ascensions can
be derived from the quadratic sum of the accuracies given by Fricke (1982) and
Schwan (1988), considering a mean epoch of 1955 for the proper motions in right
ascension (see last paragraph of Section 2.1.1 for further details). The uncertainty
thus obtained is ±80 mas. This was confirmed by Lindegren et al. (1995) who
found that the comparison of FK5 positions with those of the Hipparcos prelim-
inary catalog shows a systematic position error in FK5 of the order of 100 mas.
This was also confirmed by Mignard and Froeschlé (2000) when linking the final
Hipparcos catalog to the ICRS.

Analyses of LLR observations (Chapront et al., 2002) indicate that the origin of
right ascension in the ICRS is shifted from the inertial mean equinox at J2000.0
on the ICRS reference plane by −55.4 ± 0.1 mas (direct rotation around the polar
axis). Note that this shift of −55.4 mas on the ICRS equator corresponds to a
shift of −14.6 mas on the mean equator of J2000.0 that is used in Chapter 5.
The equinox of the FK5 was found by Mignard and Froeschlé (2000) to be at
−22.9± 2.3 mas from the origin of the right ascension of the IERS. These results
indicate that the ICRS origin of right ascension complies with the requirements
established in the IAU recommendations (21st IAU GA, Rec. VII, Resol. A4).

2.2 The ICRF

The ICRS is realized by the International Celestial Reference Frame (ICRF). A
realization of the ICRF consists of a set of precise coordinates of compact extra-
galactic radio sources. Defining sources should have a large number of observations
over a sufficiently long data span to assess position stability; they maintain the
axes of the ICRS. The ICRF positions are independent of the equator, equinox,
ecliptic, and epoch, but are made consistent with the previous stellar and dynam-
ical realizations within their respective uncertainties.

The first realization of the ICRF (hereafter referred to as ICRF1) was constructed
in 1995 by using the very long baseline interferometry (VLBI) positions of 212
“defining” compact extragalactic radio sources (IERS, 1997; Ma et al., 1998).
In addition to the defining sources, positions for 294 less observed “candidate”
sources along with 102 less suitable “other” sources were given to densify the
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frame. The position formal uncertainties of the set of positions obtained by this
analysis were calibrated to render their values more realistic. The 212 defining
sources are distributed over the sky with a median uncertainty of ±0.35 mas
in right ascension and of ±0.40 mas in declination. The uncertainty from the
representation of the ICRS is then established to be smaller than 0.01 mas. The set
of positions obtained by this analysis was rotated to the ICRS. The scattering of
rotation parameters of different comparisons performed shows that these axes are
stable to ±0.02 mas. Note that this frame stability is based upon the assumption
that the sources have no proper motion and that there is no global rotation of the
universe. The assumption concerning proper motion was checked regularly on the
successive IERS frames (Ma and Shaffer, 1991; Eubanks et al., 1994) as well as
the different subsets of the final data (IERS, 1997).

Following the maintenance process which characterizes the ICRS, two extensions
of the frame were constructed: 1) ICRF-Ext.1 by using VLBI data available until
April 1999 (IERS, 1999) and 2) ICRF-Ext.2 by using VLBI data available until
May 2002 (Fey et al., 2004). The positions and errors of defining sources are
unchanged from ICRF1. For candidate and other sources, new positions and
errors have been calculated. All of them are listed in the catalogs in order to
have a larger, usable, consistent catalog. The total number of objects is 667 in
ICRF-Ext.1 and 717 in ICRF-Ext.2.

The generation of a second realization of the International Celestial Reference
Frame (ICRF2) was constructed in 2009 by using positions of 295 new “defining”
compact extragalactic radio sources selected on the basis of positional stability and
the lack of extensive intrinsic source structure (IERS, 2009). Future maintenance
of the ICRS will be made using this new set of 295 sources. ICRF2 contains
accurate positions of an additional 3119 compact extragalactic radio sources; in
total the ICRF2 contains more than five times the number of sources as in ICRF1.
The position formal uncertainties of the set of positions obtained by this analysis
were calibrated to render their values more realistic. The noise floor of ICRF2
is found to be only ≈ 40 µas, some 5 − 6 times better than ICRF1. Alignment
of ICRF2 with the ICRS was made using 138 stable sources common to both
ICRF2 and ICRF-Ext.2. The stability of the system axes was tested by estimating
the relative orientation between ICRF2 and ICRF-Ext.2 on the basis of various
subsets of sources. The scatter of the rotation parameters obtained in the different
comparisons indicate that the axes are stable to within 10 µas, nearly twice as
stable as for ICRF1. The position stability of the 295 ICRF2 defining sources,
and their more uniform sky distribution, eliminates the two largest weaknesses of
ICRF1.

The Resol. B3 of the XXVII IAU GA resolved that from 1 January 2010 the
fundamental realization of the ICRS is the Second Realization of the International
Celestial Reference Frame (ICRF2) as constructed by the IERS/IVS Working
Group on the ICRF in conjunction with the IAU Division I Working Group on
the Second Realization of the ICRF.

The most precise direct access to the extragalactic objects in ICRF2 is done
through VLBI observations, a technique which is not widely available to users.
Therefore, while VLBI is used for the maintenance of the primary frame, the tie
of the ICRF to the major practical reference frames may be obtained through
the use of the IERS Terrestrial Reference Frame (ITRF, see Chapter 4), the
HIPPARCOS Galactic Reference Frame, and the JPL ephemerides of the solar
system (see Chapter 3).

2.2.1 Optical realization of the ICRF

In 1997, the IAU decided to replace the optical FK5 reference frame, which was
based on transit circle observations, with the Hipparcos Catalogue (ESA, 1997;
IAU, 1997).

The Hipparcos Catalogue provides the equatorial coordinates for 117,955 stars on
the ICRS at epoch 1991.25 along with their proper motions, their parallaxes and
their magnitudes in the wide band Hipparcos system. The median uncertainties
for bright stars (Hipparcos wide band magnitude < 9) are 0.77 and 0.64 mas in
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right ascension and declination, respectively. Similarly, the median uncertainties
in annual proper motion are 0.88 and 0.74 mas/yr.

The alignment of the Hipparcos Catalogue to the ICRF was realized with a stan-
dard error of 0.6 mas for the orientation at epoch 1991.25 and 0.25 mas/yr for the
spin (Kovalevsky et al., 1997). This was obtained by a variety of methods, with
VLBI observations of a dozen radio stars having the largest weight.

However, due to the short epoch span of Hipparcos observations (less than 4
years) the proper motions of many stars affected by multiplicity are unreliable
in the Hipparcos Catalogue. Therefore, the 24th IAU General Assembly adopted
resolution B1.2 which defines the Hipparcos Celestial Reference Frame (HCRF)
by excluding the stars of the Hipparcos Catalogue with C, G, O, V and X flags
for the optical realization of the ICRS (IAU, 2000).

A new reduction of the Hipparcos data (van Leeuwen 2007) resulted in significant
improvements mainly for the parallaxes of bright stars (magnitude ≤ 7). How-
ever, the coordinate system remained unchanged. Both the original and the new
reductions of the Hipparcos data are on the ICRS to within the limits specified
above.

Absolute proper motions (and parallaxes) from optical data can be obtained with-
out the HCRF by observing extragalactic sources like galaxies and quasars at mul-
tiple epochs. This has been achieved for example through the Northern Proper
Motion (NPM) program (Klemola et al., 1987) and its southern counterpart, SPM
(Girard et al., 1998). These proper motion data are on an inertial system, thus
also on the ICRS.

To obtain absolute positions with this approach is much more difficult. Optical
counterparts of ICRF sources would need to be utilized in wide-field imaging
of overlapping observations to be able to bridge the large gaps between ICRF
sources. This has not yet been accomplished in a practical application, thus all
current optical position observations rely on a set of reference stars beginning
with the HCRF as primary realization of the ICRS at optical wavelengths and the
densification catalogs derived from the HCRF.

The first step of the densification of the optical reference frame is the Tycho-2
Catalogue (Høg et al., 2000) for about 2.5 million stars. The Hipparcos satellite
star tracker observations (Tycho) provide the late epoch data, very well tied into
the Hipparcos Catalogue. The early epoch data of Tycho-2 and thus its proper
motions are derived from many ground-based catalogs which have been reduced
to the HCRF with Hipparcos reference stars. The Astrographic Catalogue (AC)
(Urban et al., 1998) provided the highest weight of the early observations for the
Tycho-2 proper motions.

Recently the limitations of the Tycho-2 Catalogue seem to have become noticeable.
Systematic errors as a function of magnitude and declination zones found in the
UCAC3 (Zacharias et al., 2010, Finch et al., 2010) may be caused by the Tycho-2
itself. Similarly, systematic errors on the 2 degree scale were found in reductions of
SPM data (Girard, priv. comm.). These systematic errors are on the 1−2 mas/yr
level, plausible with estimates of residual magnitude equations in the AC data (S.
Urban, priv. comm.).

Further steps in densifications of the optical reference frame use the Tycho-2
Catalogue for reference stars. The UCAC3 (Zacharias et al., 2010) is an example
of a recent all-sky, astrometric catalog based on CCD observations, providing
positions and proper motions for about 100 million stars. The PPMXL (Roeser
et al., 2010) is a very deep, compiled catalog giving positions and proper motions
on the ICRS for over 900 million stars. Extending beyond the visual wavelengths,
the 2MASS near-IR catalog (<3>) provides accurate positions of over 470 million
stars at individual mean epochs (around 2000), however, without proper motions.
An overview of other current and future, ground- and space-based densification
projects is given at <4>.

3http://www.ipac.caltech.edu/2mass/releases/allsky/
4http://www.astro.yale.edu/astrom/dens wg/astrom-survey-index.html
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2.2.2 Availability of the frame

The second realization of the international celestial reference frame ICRF2 (IERS,
2009) provides the most precise access to the ICRS in radio wavelengths. ICRF2
contains 3414 compact extragalactic radio sources, almost five times the number
of sources in ICRF-Ext.2 (Fey et al., 2004). The maintenance of the ICRS requires
the monitoring of the source’s coordinate stability based on new observations and
new analyses. Programs of observations have been established by different organi-
zations (United States Naval Observatory (USNO), Goddard Space Flight Center
(GSFC), National Radio Astronomy Observatory (NRAO), National Aeronautics
and Space Administration (NASA), Bordeaux Observatory) for monitoring and
extending the frame. Observations in the southern hemisphere organized un-
der the auspices of the IVS make use of the USNO and the Australia Telescope
National Facility (ATNF) for contributing to a program of source imaging and
astrometry.

The IERS Earth Orientation Parameters provide the permanent tie of the ICRF
to the ITRF. They describe the orientation of the Celestial Intermediate Pole
(CIP) in the terrestrial system and in the celestial system (polar coordinates x,
y; celestial pole offsets dψ, dε) and the orientation of the Earth around this axis
(UT1−UTC), as a function of time. This tie is available daily with an accuracy
of ±0.1 mas in the IERS publications. The principles on which the ITRF is
established and maintained are described in Chapter 4.

The other ties to major celestial frames are established by differential VLBI obser-
vations of solar system probes, galactic stars relative to quasars and other ground-
or space-based astrometry projects. The tie of the solar system ephemeris of the
Jet Propulsion Laboratory (JPL) is described by Standish et al. (1997). The later
JPL ephemerides (DE421) is aligned to the ICRS with an accuracy of better than
1 mas (Folkner et al., 2008, see also Chapter 3).

The lunar laser ranging (LLR) observations contribute to the link of the planetary
dynamical system to the ICRS. The position of the dynamical mean ecliptic with
respect to the ICRS resulting from LLR analysis is defined by the inclination of
the dynamical mean ecliptic to the equator of the ICRS (ε(ICRS)) and by the
angle between the origin of the right ascension on the equator of the ICRS and
the ascending node of the dynamical mean ecliptic on the equator of the ICRS
(φ(ICRS)). Evaluations of ε(ICRS) and φ(ICRS) made by the Paris Observatory
Lunar Analysis Centre (Chapront et al., 2002, Zerhouni et al., 2007) give the
following values for these angles at the epoch J2000:

ε(ICRS) = 23◦26′21.411′′ ± 0.1 mas;

φ(ICRS) = −0.055′′ ± 0.1 mas;

dα0 = (−0.01460± 0.00050)′′.

Ties to the frames related to catalogs at other wavelengths will be available from
the IERS as observational analyses permit.
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Lindegren, L., Röser, S., Schrijver, H., Lattanzi, M. G., van Leeuwen, F., Perry-
man, M. A. C., Bernacca, P. L., Falin, J. L., Froeschlé, M., Kovalevsky, J.,
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3 Conventional dynamical realization of the ICRS

The planetary and lunar ephemerides are used in a number of models and analysis
methods. In some cases, e.g. interplanetary spacecraft navigation, lunar laser
ranging and pulsar timing, the accuracy of the ephemeris is critical to the quality
of results and so the best ephemerides should be used. In other cases, e.g. to
model the gravitational attraction of external bodies for nutations and tides, use
of the latest released ephemerides is not critical.

Ephemerides are updated frequently with accuracy improved through the use of
more data, especially spacecraft radio tracking data and increasingly accurate
astronomical observations from Earth, and by improved dynamical modeling. Re-
cent ephemerides include the DE421 <1> from the Jet Propulsion Laboratory
(JPL) (Folkner et al., 2008), INPOP08 from the Institut de Mécanique Céleste et
de Calcul des Ephémérides (IMCCE) (Fienga et al., 2009) and EPM2008 from the
Institute of Applied Astronomy (IAA) (Pitjeva, 2009). These three ephemerides
are expected to be of comparable quality (Folkner, 2009), e.g. a comparison be-
tween INPOP08 and DE421 (Fienga et al., 2009) shows differences mostly com-
parable to the expected uncertainties. When an application is sensitive to the
accuracy of the ephemeris, as discussed earlier, it is recommended that DE421 be
the conventional ephemeris. This recommendation is intended to provide conti-
nuity for implementation by users as the DE series have provided the dynamical
realization of the celestial reference system in previous versions of the IERS Con-
ventions, the latest being DE405 (Standish et al., 1997) in the IERS Conventions
(2003).

Each of the mentioned ephemerides is integrated using the Einstein-Infeld-Hoffman
equations (Einstein et al., 1938) with dynamical time consistent with Barycentric
Dynamical Time (TDB) as defined by Resolution 3 from IAU General Assembly
XXVI (van der Hucht, 2008). Consequently the time argument of the DE421 is
TDB, which is consistent, within observational uncertainties, with Teph used as
the time argument in previous JPL ephemerides (IERS Technical Note 32, Stan-
dish 1998). The ephemerides have been aligned with the International Celestial
Reference Frame (ICRF) by means of Very Long Baseline Interferometry (VLBI)
observations of spacecraft in orbit about Venus and Mars relative to extragalactic
radio sources. The alignment of DE405 to the ICRF was done using the Magellan
spacecraft in orbit about Venus with an accuracy of 0.001′′. Through the use of
VLBI observations of Mars Global Surveyor, Mars Odyssey, and Mars Reconnais-
sance Orbiter, the later ephemerides (thus DE421) are aligned to the ICRF with
an accuracy of 0.00025′′.

The mass parameter (GM) of the Sun is most accurately determined by fitting
planetary spacecraft range data in the planetary ephemeris fitting process. From
Resolution 10 from IAU General Assembly XVI (Müller and Jappel, 1977), the
TDB-compatible value of the mass parameter of the Sun is related to the defined
value given by Gauss’ constant in units of au3/day2 by an estimated value of
the Astronomical Unit (au). The TDB-compatible value of the au estimated
with DE421 is 149597870.6996262 km and is consistent with the value given in
Chapter 1 (Table 1.1).

The mass parameters for the planets are most accurately estimated by means of
spacecraft encounters or in orbit about them. The planetary ephemerides are also
sensitive to the mass parameters of asteroids, and values have been estimated
through their effect on the Earth-Mars range as measured by spacecraft and by
astronomical observations of asteroid mutual encounters. Table 3.1 lists mass
parameters used in the DE421 ephemeris. Each solar system body’s GM is also
given as a TDB-compatible value in km3/s2 since all ratios change when the solar
GM estimate changes. In this table, the GM values expressed in SI units indicate
the accuracy by the number of significant digits. The values in Table 3.1 are
provided directly with the DE421 ephemerides and should be considered to be an
integral part of them; they will sometimes differ from a more standard set, but the
differences are necessary for the optimal fitting of the data. A list of current best

1ftp://ssd.jpl.nasa.gov/pub/eph/planets/ascii/de421
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estimates of these mass parameters has been compiled by Luzum et al. (2009)
and is available at <2>.

Table 3.1: Mass parameters from DE421 expressed as ratios and as TDB-compatible values.

GM�/GMi GMi/km3s−2

Mercury 6023597. 400017 22032.090000
Venus 408523. 718655 324858.592000
Earth 332946. 048166 398600.436233
Moon 27068703. 185436 4902.800076
Mars 3098703. 590267 42828.375214
Jupiter 1047. 348625 126712764.800000
Saturn 3497. 901768 37940585.200000
Uranus 22902. 981613 5794548.600000
Neptune 19412. 237346 6836535.000000
Pluto 135836683. 767599 977.000000

GM⊕/GMi

Earth-Moon mass ratio 81. 3005690699
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4 Terrestrial reference systems and frames

4.1 Concepts and terminology

4.1.1 Basic concepts

Terrestrial Reference Systems and their realizations. A Terrestrial Ref-
erence System (TRS) is a spatial reference system co-rotating with the Earth in
its diurnal motion in space. In such a system, positions of points attached to
the solid surface of the Earth have coordinates which undergo only small varia-
tions with time, due to geophysical effects (tectonic or tidal deformations). In the
physical model adopted in astrogeodesy, a TRS is modeled as a reference trihe-
dron close to the Earth and co-rotating with it. In the Newtonian framework, the
physical space is considered as a Euclidean affine space of dimension 3. In this
case, such a reference trihedron is a Euclidean affine frame (O, E). O is a point
of the space named origin and E is a basis of the associated vector space. The
currently adopted restrictions on E are to be right-handed, orthogonal with the
same length for the basis vectors. The triplet of unit vectors collinear to the basis
vectors expresses the orientation of the TRS and the common length of these
vectors its scale,

λ = ‖ ~Ei‖i i = 1, 2, 3. (4.1)

Here, we consider geocentric TRSs for which the origin is close to the Earth’s cen-
ter of mass (geocenter), the orientation is equatorial (the Z axis is the direction
of the pole) and the scale is close to an SI meter. In addition to Cartesian co-
ordinates (naturally associated with such a TRS), other coordinate systems, e.g.
geographical coordinates, could be used. For a general reference on coordinate
systems, see Boucher (2001).

Under these hypotheses, the general transformation of the Cartesian coordinates
of any point close to the Earth from TRS (1) to TRS (2) is given by a three-
dimensional similarity (~T1,2 is a translation vector, λ1,2 a scale factor and R1,2 a
rotation matrix)

~X(2) = ~T1,2 + λ1,2 ·R1,2 · ~X(1). (4.2)

This concept can be generalized in the frame of a relativistic background model
such as Einstein’s General Theory of Relativity, using the spatial part of a local
Cartesian coordinate system (Boucher, 1986). For more details concerning general
relativistic models, see Chapters 10 and 11.

In the application of Equation (4.2), the IERS uses the linearized formulas and
notation. The standard transformation between two reference systems is a Eu-
clidean similarity of seven parameters: three translation components, one scale
factor, and three rotation angles, designated respectively, T1, T2, T3, D, R1, R2,
R3, and their first time derivatives: Ṫ1, Ṫ2, Ṫ3, Ḋ, Ṙ1, Ṙ2, Ṙ3. The transforma-
tion of a coordinate vector ~X1, expressed in reference system (1), into a coordinate
vector ~X2, expressed in reference system (2), is given by

~X2 = ~X1 + ~T +D ~X1 +R ~X1, (4.3)

where ~T = ~T1,2, D = λ1,2−1, R = (R1,2− I), and I is the identity matrix so that

T =


T1

T2

T3

 , R =


0 −R3 R2

R3 0 −R1

−R2 R1 0

 .

It is assumed that Equation (4.3) is linear for sets of station coordinates provided
by space geodesy techniques. Origin differences are about a few hundred me-
ters, and differences in scale and orientation are at the level of 10−5. Generally,
~X1, ~X2, T , D and R are functions of time. Differentiating Equation (4.3) with
respect to time gives

~̇X2 = ~̇X1 + ~̇T + Ḋ ~X1 +D ~̇X1 + Ṙ ~X1 +R ~̇X1. (4.4)
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D and R are at the 10−5 level and ~̇X is about 10 cm per year, so the terms D ~̇X1

and R ~̇X1 which represent about 0.1 mm over 100 years are negligible. Therefore,
Equation (4.4) could be written as

~̇X2 = ~̇X1 + ~̇T + Ḋ ~X1 + Ṙ ~X1. (4.5)

It is fundamental to distinguish between a TRS, having a theoretical definition,
and its realization, a Terrestrial Reference Frame (TRF), to which users have
access.

Terrestrial Reference Frame (TRF). A Terrestrial Reference Frame is defined
as the realization of a TRS, through the realization of its origin, orientation axes
and scale, and their time evolution. We consider here that the realization is
achieved by a set of physical points with precisely determined coordinates in a
specific coordinate system as a realization of a Terrestrial Reference System. It
is also designated as a crust-based TRF and described in more detail in Section
4.1.3.

4.1.2 TRF in space geodesy

Seven parameters are needed to fix a TRF at a given epoch, to which are added
their time derivatives to define the TRF time evolution. The selection of the 14
parameters, called “datum definition,” establishes the TRF origin, scale, orienta-
tion and their time evolution.

Space geodesy techniques are not sensitive to all the parameters of the TRF
datum definition. The origin is theoretically accessible through dynamical tech-
niques (LLR, SLR, GNSS, DORIS), being the center of mass (point around which
the satellite orbits). The scale depends on some physical parameters (e.g. geo-
gravitational constant GM and speed of light c) and relativistic modeling. The
orientation, unobservable by any technique, is arbitrary or conventionally defined.
Meanwhile it is recommended to define the orientation’s time evolution using a
no-net-rotation condition with respect to horizontal motions over the Earth’s sur-
face.

Since space geodesy observations do not contain all the necessary information to
completely establish a TRF, some additional information is needed to complete
the datum definition. In terms of normal equations, usually constructed upon
space geodesy observations, this situation is reflected by the fact that the normal
matrix, N , is singular, since it has a rank deficiency corresponding to the number
of datum parameters which are not reduced by the observations.

In order to cope with this rank deficiency, the analysis centers currently add one
of the following constraints upon all or a sub-set of stations:

1. Removable constraints: solutions for which the estimated station positions
and/or velocities are constrained to external values within an uncertainty
σ ≈ 10−5 m for positions and m/y for velocities. This type of constraint is
easily removable, see for instance Altamimi et al. (2002a; 2002b).

2. Loose constraints: solutions where the uncertainty applied to the constraints
is σ ≥ 1 m for positions and ≥ 10 cm/y for velocities.

3. Minimum constraints used solely to define the TRF using a minimum amount
of required information. For more details on the concepts and practical
use of minimum constraints, see for instance Sillard and Boucher (2001) or
Altamimi et al. (2002a).

Note that the old method, where very tight constraints (σ ≤ 10−10 m) are applied
(which are numerically not easy to remove), is no longer suitable and may alter
the real quality of the estimated parameters.

In case of removable or loose constraints, this amounts to adding the following
observation equation

~X − ~X0 = 0, (4.6)
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where ~X is the vector of estimated parameters (positions and/or velocities) and
~X0 is that of the a priori parameters.

Meanwhile, in the case of minimum constraints, the added equation is of the form

B( ~X − ~X0) = 0, (4.7)

where B = (ATA)−1AT and A is the design matrix of partial derivatives, con-
structed upon a priori values ( ~X0) given by either

A =



. . . . . . .

1 0 0 xi0 0 zi0 −yi0

0 1 0 yi0 −zi0 0 xi0

0 0 1 zi0 yi0 −xi0 0

. . . . . . .


(4.8)

when solving for only station positions, or

A =



. . . . . . . . . . . . . .

1 0 0 xi0 0 zi0 −yi0
0 1 0 yi0 −zi0 0 xi0 0

0 0 1 zi0 yi0 −xi0 0

1 0 0 xi0 0 zi0 −yi0
≈ 0 0 1 0 yi0 −zi0 0 xi0

0 0 1 zi0 yi0 −xi0 0

. . . . . . . . . . . . . .



(4.9)

when solving for station positions and velocities.

The fundamental distinction between the two approaches is that in Equation (4.6),
we force ~X to be equal to ~X0 (to a given σ), while in Equation (4.7) we express ~X in
the same TRF as ~X0 using the projectorB containing all the necessary information
defining the underlying TRF. Note that the two approaches are sensitive to the
configuration and quality of the subset of stations ( ~X0) used in these constraints.

In terms of normal equations, Equation (4.7) could be written as

BTΣ−1
θ B( ~X − ~X0) = 0, (4.10)

where Σθ is a diagonal matrix containing small variances for each of the transfor-
mation parameters.

The general form of the singular normal equation constructed upon space geodesy
observations could be written as

N(∆ ~X) = K, (4.11)

where ∆ ~X = ~X− ~X0 designates the linearized unknowns and K is the right-hand
side of the normal equation. Adding Equation (4.10) to the normal equation (4.11)
allows it to be inverted and simultaneously to express the estimated solution ~X in
the same TRF as the a priori solution ~X0. Note that the 7 columns of the design
matrix A correspond to the 7 datum parameters (3 translations, 1 scale factor and
3 rotations). Therefore, this matrix should be reduced to those parameters which
need to be defined (e.g. 3 rotations in almost all techniques and 3 translations
in case of VLBI). For more practical details, see, for instance, Altamimi et al.
(2002a).
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4.1.3 Crust-based TRF

Crust-based TRFs are those currently determined in IERS activities, either by
analysis centers or by combination centers, and ultimately as IERS products (see
Section 4.1.5).

The general model connecting the instantaneous position of a point anchored on
the Earth’s crust at epoch t, ~X(t), and a regularized position ~XR(t) is

~X(t) = ~XR(t) +
∑
i

∆ ~Xi(t). (4.12)

The purpose of the introduction of a regularized position is to remove high-
frequency time variations (mainly geophysical ones) using conventional corrections
∆ ~Xi(t), in order to obtain a position with more regular time variation.

It is essential that the same conventional models be adopted and used by all
analysis centers dealing with space geodesy data. The currently adopted models
are described in Chapter 7.

4.1.4 The International Terrestrial Reference System

The IERS is in charge of defining, realizing and promoting the International Ter-
restrial Reference System (ITRS). The ITRS has been recently formally adopted
by the IUGG at its General Assembly in Perugia (2007), through its Resolution
2 (see Appendix C).

To summarize and synthesize these legal texts (IAG and IUGG resolutions of 1991
and 2007, consistent with latest IAU Resolutions)

• GTRS (geocentric terrestrial reference system) is the new designation of
CTRS (conventional terrestrial reference system), while the term CTRS is
now used as a generic term to designate the identification of a specific TRS
through a list of conventional rules fixing the origin, scale and orientation.

• The GTRS origin is the geocenter, considered for the whole Earth system
body, including oceans and atmosphere.

• The GTRS time coordinate is TCG (Geocentric Coordinate Time). There-
fore, the scale of the spatial coordinates is consistent with this fact.

• The time evolution of the orientation of GTRS follows a no-net-rotation
(NNR) condition with regards to the horizontal Earth surface.

In fact, the IAG Resolution of 1991, as well as various scientific and practical
considerations, led explicitly to defining the ITRS as three-dimensional. For ex-
ample, we note that accurate geophysical models are presently developed within
the Newtonian framework and that all practical applications (mapping, naviga-
tion) consider ITRS as a three-dimensional system.

The Perugia text should be read in such a way that the ITRS is assimilated to
the spatial part of GTRS (and not to the 4d coordinate system). Following the
previous summary, the ITRS is therefore fully fixed, considering the statement
that its orientation fulfills the international agreements (Bureau International de
l’Heure (BIH) orientation). The practical procedure adopted by the IERS at the
beginning of its work led to the consideration that the ITRS orientation coincides
with the previous BIH system at the epoch 1984.0.

The ITRS definition fulfills the following conditions:

1. It is geocentric, its origin being the center of mass for the whole Earth,
including oceans and atmosphere;

2. The unit of length is the meter (SI). The scale is consistent with the TCG
time coordinate for a geocentric local frame, in agreement with IAU and
IUGG (1991) resolutions. This is obtained by appropriate relativistic mod-
eling;

3. Its orientation was initially given by the BIH orientation at 1984.0;

4. The time evolution of the orientation is ensured by using a no-net-rotation
condition with regards to horizontal tectonic motions over the whole Earth.
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4.1.5 Realizations of the ITRS

Primary realizations of the ITRS are produced by the IERS ITRS Center
(ITRS-PC) under the name International Terrestrial Reference Frame (ITRF).
Twelve ITRF versions were produced, starting with ITRF88 and ending with the
ITRF2008. Up to the ITRF2000 solution, long-term global solutions (compris-
ing station positions and velocities) from four techniques (VLBI, SLR, GPS and
DORIS) were used as input for the ITRF generation. As described in more detail
later, starting with the ITRF2005, time series of station positions and Earth Ori-
entation Parameters (EOPs) are used as input data for the ITRF construction.
The current procedure is to combine the technique TRF solutions using a combi-
nation model which is essentially based on the transformation formulas (4.3) and
(4.5). The combination method makes use of local ties in co-location sites where
two or more geodetic techniques are operated. The local ties are used as additional
observations with proper variances. They are usually derived from local surveys
using either classical geodesy or the global navigation satellite systems (GNSS).
As they represent a key element of the ITRF combination, they should be more,
or at least as accurate as the individual space geodesy solutions incorporated in
the ITRF combination.

Up to ITRF2000 ITRF solutions were published by the ITRS-PC in Technical
Notes (cf. Boucher et al., 1996, 1998, 1999, 2004). The number following the
designation “ITRF” specifies the last year whose data were used for the formation
of the frame. Hence, ITRF2008 designates the frame of station positions and
velocities constructed in 2010 using data available until the end of 2008 (2009.5
for GPS).

The current ITRF model is linear (position at a reference epoch t0 and velocity).
Therefore, the station position at an epoch t is expressed as:

~X(t) = ~X0 + ~̇X · (t− t0). (4.13)

The numerical values are ( ~X0, ~̇X). In the past (ITRF88 and ITRF89), constant
positions were used as models ( ~X0), the linear motion being incorporated as
conventional corrections derived from a tectonic plate motion model (see Sec-
tion 4.2.2).

The reader may also refer to an earlier report of the ITRF Working Group on
the ITRF Datum (Ray et al., 1999), which contains useful information related
to the history of the ITRF datum definition. It also details technique-specific
effects on some parameters of the datum definition, in particular the origin and
the scale. More details on the formation of ITRF2000 and ITRF2005 are available
in Altamimi et al. (2002b, 2007).

4.2 ITRF products

4.2.1 The IERS network

The initial definition of the IERS network

The IERS network was initially defined through all tracking instruments used by
the various individual analysis centers contributing to the IERS. All SLR, LLR
and VLBI systems were included. Eventually, GPS stations from the IGS were
added as well as the DORIS tracking network. The network also included, from
its beginning, a selection of ground markers, specifically those used for mobile
equipment and those currently included in local surveys performed to monitor
local eccentricities between instruments for co-location sites or for site stability
checks.

Each point is currently identified by the assignment of a DOMES (Directory of
MERIT Sites) number. The explanation of the DOMES numbering system is
given below. Close points are clustered into one site. The current rule is that
all points which could be linked by a co-location survey (up to 30 km) should be
included into the IERS network as a unique site having a unique DOMES site
number. In reality, for a local tie to be precise at the 1 mm level, the extension of
a co-location site should not exceed 1 km.
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Co-locations

In the frame of the IERS, the concept of co-location can be defined as the fact that
two instruments are occupying simultaneously or subsequently very close locations
that are very precisely surveyed in three dimensions. These include situations such
as simultaneous or non-simultaneous measurements and instruments of the same
or different techniques. Usually, co-located points should belong to a unique IERS
site.

Extensions of the IERS network

Following the requirements of various user communities, the initial IERS network
was expanded to include new types of systems which are of potential interest.
Consequently, the current types of points allowed in the IERS and for which a
DOMES number can be assigned are (IERS uses a one character code for each
type):

• L for satellite laser ranging (SLR),

• M for lunar laser ranging (LLR),

• R for very long baseline interferometry (VLBI),

• P for global navigation satellite systems (GNSS),

• D for détermination d’orbite et radiopositionnement intégrés par satellite (DO-
RIS; also Doppler Navy Navigation Satellite System (NNSS) in the past),

• A for optical astrometry (formerly used by the BIH),

• X for precise range and range rate equipment (PRARE),

• T for tide gauge,

• W for meteorological sensor.

For instance, the cataloging of tide gauges co-located with IERS instruments, in
particular GNSS or DORIS, is of interest for the Global Sea Level Observing
System (GLOSS) program under the auspices of UNESCO.

Another application is to collect accurate meteorological surface measurements,
in particular atmospheric pressure, in order to derive raw tropospheric parameters
from tropospheric propagation delays that can be estimated during the processing
of radio measurements, e.g. made by the GNSS, VLBI, or DORIS. Other systems
could also be considered, if it was regarded as useful (for instance systems for time
transfer, super-conducting or absolute gravimeters, etc.).

Another important extension is the wish of some continental or national orga-
nizations to see their fiducial networks included into the IERS network, either
to be computed by IERS (for instance the European Reference Frame (EUREF)
permanent GNSS network) or at least to get DOMES numbers (for instance the
Continuously Operating Reference Stations (CORS) network in the USA).

4.2.2 History of ITRF products

The history of the ITRF goes back to 1984, when for the first time a combined
TRF (called BIH Terrestrial System 1984 BTS84) was established using station
coordinates derived from VLBI, LLR, SLR and Doppler/TRANSIT (the prede-
cessor of GPS) observations (Boucher and Altamimi, 1985). BTS84 was realized
in the framework of the activities of BIH, being a coordinating center for the in-
ternational MERIT project (Monitoring of Earth Rotation and Intercomparison
of Techniques; Wilkins, 2000). Three other successive BTS realizations were then
achieved, ending with BTS87, before in 1988, the IERS was created by the IUGG
and the IAU.

Until the time of writing, twelve versions of the ITRF were published, starting with
ITRF88 and ending with ITRF2008, each of which superseded its predecessor.

From ITRF88 till ITRF93, the ITRF datum definition can be summarized as
follows:

• Origin and scale: defined by an average of selected SLR solutions;
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• Orientation: defined by successive alignment since BTS87 whose orientation
was aligned to the BIH EOP series. Note that the ITRF93 orientation and its
rate were again realigned to the IERS EOP series;

• Orientation time evolution: No global velocity field was estimated for ITRF88,
ITRF89 and ITRF90, so the AM0-2 model of Minster and Jordan (1978) was
recommended. Starting with ITRF91 and till ITRF93, combined velocity fields
were estimated. The ITRF91 orientation rate was aligned to that of the NNR-
NUVEL-1 model (Argus and Gordon, 1991), and ITRF92 to NNR-NUVEL-1A,
adapted from NNR-NUVEL-1 according to DeMets et al. (1994), while ITRF93
was aligned to the IERS EOP series.

Since the ITRF94, full variance matrices of the individual solutions incorporated
in the ITRF combination have been used. At that time, the ITRF94 datum was
achieved as follows (Boucher et al., 1996):

• Origin: defined by a weighted mean of selected SLR and GPS solutions;

• Scale: defined by a weighted mean of VLBI, SLR and GPS solutions, corrected
by 0.7 ppb to meet the IUGG and IAU requirement to be compatible with
TCG, while analysis centers provide solutions that are compatible with TT
(Terrestrial Time);

• Orientation: aligned to the ITRF92;

• Orientation time evolution: velocity field aligned to the model NNR-NUVEL-
1A, using the 7 rates of the transformation parameters.

The ITRF96 was then aligned to the ITRF94, and the ITRF97 to the ITRF96
using the 14 transformation parameters (Boucher et al., 1998; 1999).

The ITRF2000 was intended to be a standard solution for geo-referencing and
all Earth science applications. Therefore, in addition to primary core stations
observed by VLBI, LLR, SLR, GPS and DORIS, the ITRF2000 was densified
by regional GPS networks in Alaska, Antarctica, Asia, Europe, North and South
America and the Pacific.

The individual solutions used for the ITRF2000 combination were generated by
the IERS analysis centers using removable, loose or minimum constraints.

In terms of datum definition, the ITRF2000 is characterized by the following
properties:

• Origin: realized by setting to zero the translation components and their rates
between ITRF2000 and a weighted average of the most consistent SLR solu-
tions;

• Scale: realized by setting to zero the scale and scale rate parameters between
ITRF2000 and a weighted average of VLBI and the most consistent SLR so-
lutions. Unlike the ITRF97 scale which is compatible with TCG, that of the
ITRF2000 is compatible with TT;

• Orientation: aligned to that of the ITRF97 at 1997.0;

• Orientation time evolution: aligned, conventionally, to that of the geological
model NNR-NUVEL-1A (Argus and Gordon, 1991; DeMets et al., 1990; 1994).

The ITRF network has improved with time in terms of the number of sites and co-
locations as well as their distribution over the globe. Figure 4.1 shows the ITRF88
network including about 100 sites and 22 co-locations (VLBI/SLR/LLR), and the
ITRF2008 network containing 580 sites and 105 co-locations (VLBI/SLR/GPS/-
DORIS).

4.2.3 ITRF2005

For the first time in ITRF history, the ITRF2005 used as input data time series of
station positions (weekly from satellite techniques and 24-hour session-wise from
VLBI) and daily EOPs. One set of time series per space geodesy technique was
considered as input to the ITRF2005 combination. These solutions are the official
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Figure 4.1: ITRF88 (left) and ITRF2008 (right) sites and co-located techniques.

time series provided by the international services of the 4 techniques, known as
Technique Centers (TC) within the IERS. Note that these official TC solutions
result from a combination at the weekly (daily) basis of the corresponding indi-
vidual solutions provided by the analysis centers participating in the activities
of each TC. Official time series were submitted to the ITRF2005 by the Interna-
tional VLBI Service for Geodesy and Astrometry (IVS), the International Laser
Ranging Service (ILRS) and the International GNSS Service (IGS). At the time
of the ITRF2005 release, official weekly combined solutions from the International
DORIS Service (IDS) were not available, so that individual solutions were sub-
mitted by two DORIS analysis centers. For more details the reader may refer to
Altamimi et al. (2007).

The ITRF2005 generation consisted of two steps: (1) stacking the individual time
series to estimate a long-term solution per technique comprising station positions
at a reference epoch and velocities as well as daily EOPs; and (2) combining the
resulting long-term solutions of the four techniques together with the local ties
in co-location sites. Therefore, in addition to the usual ITRF products (station
positions and velocities), other important ITRF2005 results are also available to
the users, namely:

1. full ITRF2005 and per technique SINEX files containing station positions,
velocities and EOPs with complete variance-covariance matrices;

2. time series of station position residuals resulting from the stacking of the
individual time series of the 4 techniques;

3. geocenter time series from SLR and DORIS. There is no useful geocenter
motion information from GPS/IGS because it has been removed <1>, the
submitted weekly solutions being aligned to ITRF2000;

4. full time series of EOPs consistent with the ITRF2005.

The ITRF2005 origin is defined in such a way that it has zero translations and
translation rates with respect to the Earth center of mass, averaged by the SLR
time series spanning 13 years of observations. Its scale is defined by nullifying
the scale and its rate with respect to the VLBI time series spanning 26 years of
observations. It should be noted that after the release of the ITRF2005 it was
discovered that the IVS VLBI solutions used for the ITRF2005 construction did
not include pole tide corrections referenced to the mean pole path recommended by
the IERS Conventions 2003. Post-ITRF2005 analyses of IVS solutions where the
mean pole tide correction was applied revealed a constant scale offset of -0.5 ppb
with respect to the IVS solutions used for ITRF2005 (Altamimi and Collilieux,
2008). The ITRF2005 orientation (at epoch 2000.0) and its rate are aligned to
ITRF2000 using 70 stations of high geodetic quality.

1The removed geocenter motions are retained in the weekly SINEX files under the parameters XGC, YGC, and ZGC.
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4.2.4 ITRF2008, the current reference realization of the ITRS

Following the same strategy initiated with the ITRF2005 release, the ITRF2008 is
a refined solution based on reprocessed solutions of four space geodesy techniques:
VLBI, SLR, GPS and DORIS, spanning 29, 26, 12.5 and 16 years of observations,
respectively.

The ITRF2008 is composed of 934 stations located at 580 sites as illustrated in
Fig. 4.1, with an imbalanced distribution between the northern (463 sites) and
the southern hemisphere (117 sites).

As illustrated by Fig. 4.1, there are in total 105 co-location sites; 91 of these
have local ties available for the ITRF2008 combination. Note that, unfortunately,
not all these co-located instruments are currently operating. For instance, among
the 6 sites having 4 techniques, only two are currently fully operational: Harte-
beesthoek, South Africa and Greenbelt, MD, USA.

The ITRF2008 is specified by the following frame parameters:

• Origin: The ITRF2008 origin is defined in such a way that there are zero
translation parameters at epoch 2005.0 and zero translation rates with re-
spect to the ILRS SLR time series.

• Scale: The scale of the ITRF2008 is defined in such a way that there is a
zero scale factor at epoch 2005.0 and a zero scale rate with respect to the
mean scale and scale rate of VLBI and SLR time series.

• Orientation: The ITRF2008 orientation is defined in such a way that there
are zero rotation parameters at epoch 2005.0 and zero rotation rates between
ITRF2008 and ITRF2005. These two conditions are applied over a set of
179 reference stations located at 131 sites, including 107 GPS, 27 VLBI, 15
SLR and 12 DORIS sites.

4.2.5 ITRF as a realization of the ITRS

The procedure used by the IERS to determine ITRF products includes the fol-
lowing steps:

1. definition of individual TRF used by contributing analysis centers. This
implies knowing the particular conventional corrections adopted by each
analysis center;

2. determination of the ITRF by the combination of individual TRF and datum
fixing. This implies the adoption of a set of conventional corrections for the
ITRF and ensures the consistency of the combination by removing possible
differences between corrections adopted by each contributing analysis center.

Meanwhile, for various reasons, there are particular cases where users would need
to add specific corrections to ITRF coordinates in order to meet their particular
applications. The currently identified cases are the following:

A) Solid Earth tides

To account for the displacement due to solid Earth tides, all analysis centers use
a model ∆ ~XtidM that contains a time-independent part, so that the regularized
positions obtained are termed “conventional tide-free”, according to the nomen-
clature in the Introduction of the Conventions. Such a hypothesis has been taken
since the first solid Earth tides model of the MERIT Standards. Consequently,
the ITRF has adopted the same option and is therefore a “conventional tide-
free” frame. To adopt a different model, ∆ ~Xtid, a user would need to apply the
following formula to obtain coordinates ~X consistent with this model:

~X = ~XITRF + (∆ ~Xtid −∆ ~XtidM ). (4.14)

For more details concerning tidal corrections, see Chapter 7.

B) Relativistic scale

All individual centers use a scale consistent with TT. In the same manner the
ITRF has also adopted this option (except ITRF94, 96 and 97, see Section 4.2.2).
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It should be noted that the ITRS scale is specified to be consistent with TCG.
Consequently, if coordinates ~X consistent with TCG are needed, users need to
apply the following formula:

~X = (1 + LG) ~XITRF (4.15)

where LG is according to Table 1.1 in Chapter 1. Note that consistency between
numerical constants should be ensured as described in Chapter 1.

C) Geocentric positions

The ITRF origin should be considered as the mean Earth center of mass, averaged
over the time span of the SLR observations used and modeled as a secular (linear)
function of time. If an instantaneous geocentric position ~X is required, it should
be computed as

~X = ~XITRF − ~OG, (4.16)

where ~OG represents the geocenter motion in ITRF (vector from the ITRF origin
to the instantaneous center of mass) <2>.

4.2.6 Transformation parameters between ITRF solutions

Table 4.1 lists transformation parameters and their rates from ITRF2008 to previ-
ous ITRF versions, which should be used with Equations (4.3) and (4.5). The val-
ues listed in this table have been compiled from those already published in previous
IERS Technical Notes as well as from ITRF97/ITRF2000, ITRF2000/ITRF2005
and ITRF2005/ITRF2008 comparisons. Moreover, it should be noted that these
parameters are adjusted values which are heavily dependent on the weighting as
well as the number and distribution of the implied common sites between these
frames. Therefore, using different subsets of common stations between two ITRF
solutions to estimate transformation parameters would not necessarily yield values
consistent with those of Table 4.1.

ITRF solutions are specified by Cartesian equatorial coordinates X, Y and Z.
If needed, they can be transformed to geographical coordinates (λ, φ, h) referred
to an ellipsoid. In this case the GRS80 ellipsoid is recommended (semi-major
axis a = 6378137.0 m, inverse flattening 1/f = 298.257222101, see Table 1.2 in
Chapter 1). See the IERS Conventions’ web page for the subroutine, GCONV2.F,
at <3>. The SOFA (Standards of Fundamental Astronomy) service <4> also
provides a routine iau GC2GDE in both Fortran 77 and ANSI C to perform the
transformation.

4.3 Access to the ITRS

Several ways could be used to express point positions in the ITRS, e.g.

• direct use of ITRF station positions and velocities;

• use of IGS products (e.g. orbits and clocks) which are nominally all referred to
the ITRF. However, users should be aware of the ITRF version used for the
generation of the IGS products.

• fixing or constraining some ITRF station coordinates in the analysis of GNSS
measurements of campaign or permanent stations;

• use of transformation formulas which would be estimated between a particular
TRF and an ITRF solution.

Other useful details are also available in Boucher and Altamimi (1996). All infor-
mation on ITRF solutions since ITRF94 may be found at <5>.

2Note that this convention is the one most often used within space geodesy but it might not be universally used e.g.
in geophysics or other communities.

3http://tai.bipm.org/iers/conv2010/conv2010 c4.html
4http://www.iausofa.org/
5http://itrf.ensg.ign.fr/ITRF solutions/index.php
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Table 4.1: Transformation parameters from ITRF2008 to past ITRFs. “ppb” refers to parts per billion
(or 10−9). The units for rates are understood to be “per year.”

ITRF

Solution T1 T2 T3 D R1 R2 R3

(mm) (mm) (mm) (ppb) (mas) (mas) (mas) Epoch

ITRF2005 -2.0 -0.9 -4.7 0.94 0.00 0.00 0.00 2000.0
rates 0.3 0.0 0.0 0.00 0.00 0.00 0.00

ITRF2000 -1.9 -1.7 -10.5 1.34 0.00 0.00 0.00 2000.0
rates 0.1 0.1 -1.8 0.08 0.00 0.00 0.00

ITRF97 4.8 2.6 -33.2 2.92 0.00 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ITRF96 4.8 2.6 -33.2 2.92 0.00 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ITRF94 4.8 2.6 -33.2 2.92 0.00 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ITRF93 -24.0 2.4 -38.6 3.41 -1.71 -1.48 -0.30 2000.0
rates -2.8 -0.1 -2.4 0.09 -0.11 -0.19 0.07

ITRF92 12.8 4.6 -41.2 2.21 0.00 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ITRF91 24.8 18.6 -47.2 3.61 0.00 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ITRF90 22.8 14.6 -63.2 3.91 0.00 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ITRF89 27.8 38.6 -101.2 7.31 0.00 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02

ITRF88 22.8 2.6 -125.2 10.41 0.10 0.00 0.06 2000.0
rates 0.1 -0.5 -3.2 0.09 0.00 0.00 0.02
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5 Transformation between the International Terrestrial Refer-

ence System and the Geocentric Celestial Reference System

5.1 Introduction

The transformation to be used to relate the International Terrestrial Reference
System (ITRS) to the Geocentric Celestial Reference System (GCRS) at the date
t of the observation can be written as:

[GCRS] = Q(t)R(t)W (t) [ITRS], (5.1)

where Q(t), R(t) and W (t) are the transformation matrices arising from the mo-
tion of the celestial pole in the celestial reference system, from the rotation of the
Earth around the axis associated with the pole, and from polar motion respec-
tively.

Note that Eq. (5.1) is valid for any choice of celestial pole and origin on the equator
of that pole.

The definition of the GCRS and ITRS and the procedures for the ITRS to GCRS
transformation that are provided in this chapter comply with the IAU 2000/2006
resolutions (provided at <1> and in Appendix B). More detailed explanations
about the relevant concepts, software and IERS products corresponding to the
IAU 2000 resolutions can be found in IERS Technical Note 29 (Capitaine et al.,
2002), as well as in a number of original subsequent publications that are quoted
in the following sections.

The chapter follows the recommendations on terminology associated with the
IAU 2000/2006 resolutions that were made by the 2003-2006 IAU Working Group
on “Nomenclature for fundamental astronomy” (NFA) (Capitaine et al., 2007).
We will refer to those recommendations in the following as “NFA recommenda-
tions” (see Appendix A for the list of the recommendations). This chapter also
uses the definitions that were provided by this Working Group in the “IAU 2006
NFA Glossary”(available at
http://syrte.obspm.fr/iauWGnfa/).

Eq. (5.1), as well as the following formulas in this chapter, are theoretical for-
mulations that refer to reference “systems”. However, it should be clear that
the numerical implementation of those formulas involves the IAU/IUGG adopted
realization of those reference systems, i.e. the International Terrestrial Reference
Frame (ITRF) and the International Celestial Reference Frame (ICRF), respec-
tively.

Numerical values contained in this chapter have been revised from the IERS 2003
values in order to be compliant with the IAU 2006 precession. Software routines
implementing the transformations are described towards the end of the chapter.

The transformation between the celestial and terrestrial reference systems also
being required for computing directions of celestial objects in intermediate sys-
tems, the process to transform among these systems consistently with the IAU
resolutions is also set out at the end of this chapter, including a chart provided
by the IAU NFA Working Group in order to illustrate the various stages of the
process.

5.2 The framework of IAU 2000/2006 resolutions

Several resolutions were adopted by the XXIVth and XXVIth General Assemblies
of the
International Astronomical Union (Manchester, August 2000, and Prague, August
2006) that concern the transformation between the celestial and terrestrial refer-
ence systems (see 1 and Appendix B for the complete text of those resolutions).
Those resolutions were endorsed by the IUGG in 2003 and 2007, respectively.
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5 Transformation between the ITRS and the GCRS

5.2.1 IAU 2000 resolutions

The IAU 2000 resolutions (<1>) that are relevant to this chapter are described
in the following:

• IAU 2000 Resolution B1.3 specifies that the systems of space-time coor-
dinates as defined by IAU 1991 Resolution A4 for the solar system and
the Earth within the framework of General Relativity are now named the
Barycentric Celestial Reference System (BCRS) and the Geocentric Celestial
Reference System (GCRS) respectively. It also provides a general framework
for expressing the metric tensor and defining coordinate transformations at
the first post-Newtonian level.

• IAU 2000 Resolution B1.6 recommends that, beginning on 1 January 2003,
the IAU 1976 precession model (Lieske et al., 1977) and the IAU 1980 theory
of nutation (Wahr, 1981; Seidelmann, 1982) be replaced by the precession-
nutation model IAU 2000A (MHB2000 based on the transfer functions of
Mathews et al. (2002)) for those who need a model at the 0.2 mas level, or
its shorter version IAU 2000B for those who need a model only at the 1 mas
level, together with their associated celestial pole offsets, published in this
document. See Dehant et al. (1999) for more details. In addition to that
model are frame bias values between the mean pole and equinox at J2000.0
and the GCRS.

The precession part of the IAU 2000A model consists only of corrections to
the precession rates of the IAU 1976 precession, and hence does not corre-
spond to a dynamical theory. This is why IAU 2000 Resolution B1.6, that
recommended the IAU 2000A precession-nutation model, encouraged at the
same time the development of new expressions for precession consistent with
dynamical theories and with IAU 2000A nutation.

• IAU 2000 Resolution B1.7 recommends that the Celestial Intermediate Pole
(CIP) be implemented in place of the Celestial Ephemeris Pole (CEP) as of
1 January 2003, and specifies how to implement its definition through its
direction at J2000.0 in the GCRS as well as the realization of its motion
both in the GCRS and ITRS. Its definition is an extension of that of the
CEP in the high frequency domain and coincides with that of the CEP in
the low frequency domain (Capitaine, 2000).

• For longitude origins on the CIP equator in the celestial and the terrestrial
reference systems, IAU 2000 Resolution B1.8 recommends the “non-rotating
origin” (Guinot, 1979). They were designated Celestial Ephemeris Origin
and Terrestrial Ephemeris Origin , but renamed Celestial Intermediate Ori-
gin and Terrestrial Intermediate Origin, respectively, by IAU 2006 Resolu-
tion B2 (see below).

The “Earth Rotation Angle” (ERA) is defined as the angle measured along
the equator of the CIP between the CIO and the TIO, and UT1 is defined
by a conventionally adopted linear proportionality to the ERA. IAU 2000
Resolution B1.8 also recommends that the transformation between the ITRS
and GCRS be specified by the position of the CIP in the GCRS, the posi-
tion of the CIP in the ITRS, and the Earth Rotation Angle. It was finally
recommended that the IERS take steps to implement this by 1 January 2003
and that the IERS continue to provide users with data and algorithms for
the conventional transformation.

IAU 2000 Resolutions B1.6, B1.7 and B1.8 came into force on 1 January 2003.
By that time, the required models, procedures, data and software had been made
available by the IERS Conventions 2003 and the Standards Of Fundamental As-
tronomy (SOFA) service (Section 5.9 and Wallace, 1998) and the resolutions were
implemented operationally.

1http://syrte.obspm.fr/IAU resolutions/Resol-UAI.htm
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5.2.2 IAU 2006 resolutions

The IAU 2006 resolutions (cf. Appendix B) that are relevant to this chapter are
the following:

• IAU 2006 Resolution B1, proposed by the 2003-2006 IAU Working Group
on “Precession and the Ecliptic” (Hilton et al., 2006), recommends that,
beginning on 1 January 2009, the precession component of the IAU 2000A
precession-nutation model be replaced by the P03 precession theory of Cap-
itaine et al. (2003c) in order to be consistent with both dynamical theories
and the IAU 2000 nutation. We will refer to that model as “IAU 2006
precession”.

That resolution also clarifies the definitions of the precession of the equator
and the precession of the ecliptic.

• IAU 2006 Resolution B2, which is a supplement to the IAU 2000 resolutions
on reference systems, consists of two recommendations:

1. harmonizing “intermediate” in the names of the pole and the origin
(i.e. celestial and terrestrial intermediate origins, CIO and TIO instead
of CEO and TEO, respectively) and defining the celestial and terrestrial
“intermediate” systems; and

2. fixing the default orientation of the BCRS and GCRS, which are, unless
otherwise stated, assumed to be oriented according to the ICRS axes.

The IAU precession-nutation model resulting from IAU 2000 Resolution B1.6 and
IAU 2006 Resolution B1, will be denoted IAU 2006/2000 precession-nutation in
the following. A description of that model is given in Section 5.6.1 and Sec-
tion 5.6.2.

5.3 Implementation of IAU 2000 and IAU 2006 resolutions

5.3.1 The IAU 2000/2006 space-time reference systems

In order to follow IAU 2000 Resolution B1.3, the celestial reference system to
be considered in the terrestrial-to-celestial transformation expressed by Eq. (5.1)
must correspond to the geocentric space coordinates of the GCRS. IAU 1991
Resolution A4 specified that the relative orientation of barycentric and geocentric
spatial axes in BCRS and GCRS are without any time-dependent rotation. This
requires that the geodesic precession and nutation be taken into account in the
precession-nutation model. Moreover, IAU 2006 Resolution B2 specifies that the
BCRS and GCRS are oriented according to the ICRS axes.

Concerning the time coordinates, IAU 1991 Resolution A4 defined TCB and TCG
of the BCRS and GCRS respectively, as well as another time coordinate in the
GCRS, Terrestrial Time (TT), which is the theoretical counterpart of the realized
time scale TAI + 32.184 s. The IAU 2000/2006 resolutions have clarified the
definition of the two time scales TT and TDB. TT has been re-defined (IAU 2000
Resolution B1.9) as a time scale differing from TCG by a constant rate, which is
a defining constant. In a very similar way, TDB has been re-defined (IAU 2006
Resolution B3) as a linear transformation of TCB, the coefficients of which are
defining constants. See Chapter 10 for the relationships between these time scales.

The parameter t, used in Eq. (5.1) as well as in the following expressions, is defined
by

t = (TT− 2000 January 1d 12h TT) in days/36525. (5.2)

This definition is consistent with IAU 1994 Resolution C7 which recommends that
the epoch J2000.0 be defined at the geocenter and at the date 2000 January 1.5
TT = Julian Date 2451545.0 TT.

5.3.2 Schematic representation of the motion of the Celestial Intermediate Pole (CIP)

According to IAU 2000 Resolution B1.7, the CIP is an intermediate pole sepa-
rating, by convention, the motion of the pole of the ITRS in the GCRS into a
celestial part and a terrestrial part. The convention is such that:
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5 Transformation between the ITRS and the GCRS

• the celestial motion of the CIP (precession-nutation), includes all the terms
with periods greater than 2 days in the GCRS (i.e. frequencies between −0.5
cycles per sidereal day (cpsd) and +0.5 cpsd),

• the terrestrial motion of the CIP (polar motion), includes all the terms outside
the retrograde diurnal band in the ITRS (i.e. frequencies lower than −1.5 cpsd
or greater than −0.5 cpsd).

The following chart illustrates the conventional frequency separation between the
precession-nutation of the CIP and its polar motion, either viewed in the ITRS
(top), or the GCRS (bottom), with a 1 cpsd shift due to the rotation of the ITRS
with respect to the GCRS.

frequency in ITRS

−3.5 −2.5 −1.5 −0.5 +0.5 +1.5 +2.5 (cpsd)

polar motion polar motion

frequency in GCRS

−2.5 −1.5 −0.5 +0.5 +1.5 +2.5 +3.5 (cpsd)

precession

-nutation

5.3.3 The IAU 2000/2006 realization of the Celestial Intermediate Pole (CIP)

In order to follow IAU 2000 Resolution B1.6 and IAU 2006 Resolution B1, the
precession-nutation quantities to be used in the transformation matrix Q(t) of
Eq. (5.1) must, starting on 1 January 2009, be based on the IAU 2006 precession
and on the nutation model IAU 2000A or IAU 2000B depending on the required
precision (the corresponding precession-nutation being denoted IAU 2006/2000A
and IAU 2006/200B, respectively). IAU 2006 Resolution B1 adopting the IAU 2006
precession does not stipulate a specific parameterization, expressly stating that the
user makes this choice. Various ways of forming the precession-nutation matrix
based on a rigorous procedure in the IAU 2006 framework have been discussed in
Capitaine and Wallace (2006), and the precession-nutation procedures consistent
with IAU 2006 resolutions have been provided in Wallace and Capitaine (2006).
The procedures provided in the following sections are based on the results of that
paper.

In order to follow IAU 2000 Resolution B1.7, the realized celestial pole must be
the CIP. This requires an offset at epoch in the conventional model for precession-
nutation as well as diurnal and higher frequency variations in the Earth’s orien-
tation. According to this resolution, the direction of the CIP at J2000.0 has to be
offset from the pole of the GCRS in a manner consistent with the IAU 2006/2000A
precession-nutation model. The motion of the CIP in the GCRS is realized (see
Section 5.3.2) by the IAU model for precession and forced nutation for periods
greater than two days plus additional time-dependent corrections provided by the
IERS through appropriate astro-geodetic observations. The motion of the CIP in
the ITRS is provided by the IERS through astro-geodetic observations and models
including variations with frequencies outside the retrograde diurnal band.

The realization of the CIP thus requires that the IERS monitor the observed
differences (reported as “celestial pole offsets”) with respect to the conventional
celestial position of the CIP in the GCRS based on the IAU 2006/2000 precession-
nutation model together with its observed offset at epoch. It also requires that
the motion of the CIP in the ITRS be provided by the IERS by observations
taking into account a predictable part specified by a model including the terrestrial
motion of the pole corresponding to the forced nutations with periods less than
two days (in the GCRS) as well as the tidal variations in polar motion.
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5.3.4 Procedures to be used for the terrestrial-to-celestial transformation consistent
with IAU 2000/2006 resolutions

Two equivalent procedures have been given in the IERS Conventions 1996 and
2003 for the coordinate transformation from the ITRS to the GCRS expressed by
Eq. (5.1). According to the NFA recommendations, these procedures, which differ
by the origin that is adopted on the CIP equator (i.e. the equinox or the CIO), will
be called in the following “equinox based” and “CIO based”, respectively. Each of
these procedures is based on a specific representation of the transformation matrix
components Q(t) and R(t) of Eq. (5.1), which depends on the corresponding
origin on the CIP equator, while the representation of the transformation matrix
component W (t) is common to the two procedures.

IAU 2000 Resolutions B1.3, B1.6 and B1.7 as well as IAU 2006 B1 can be im-
plemented in any of these two procedures if the requirements described in Sec-
tions 5.3.1 and 5.3.3 are followed for the space-time coordinates in the geocentric
celestial reference system, for the precession and nutation model on which are
based the precession and nutation quantities used in the transformation matrix
Q(t) and for the polar motion used in the transformation matrix W (t). On the
other hand, only the CIO based procedure can be in agreement with IAU 2000
Resolution B1.8, which requires the use of the “non-rotating origin” in both the
GCRS and the ITRS as well as the position of the CIP in the GCRS and in the
ITRS. This is why this chapter of the IERS Conventions provides the expres-
sions for the implementation of the IAU resolutions with more emphasis on the
CIO based procedure. However, the IERS must also provide users with data and
algorithms for the conventional transformation, which implies in particular that
the expression of Greenwich Sidereal Time (GST) has to be consistent with the
new procedure. Consequently, this chapter also provides the expressions which
are necessary to be compatible with the resolutions when using the conventional
transformation.

The following sections give the details of the CIO based procedure and the stan-
dard expressions necessary to obtain the numerical values of the relevant param-
eters for both procedures at the date of observation.

5.4 Coordinate transformation consistent with the IAU 2000/2006 resolu-
tions

The coordinate transformation (5.1) from the ITRS to the GCRS corresponding
to the procedure consistent with IAU 2000 Resolution B1.8 is expressed in terms
of the three fundamental components W (t), R(t) and Q(t), as described in the
following.

According to IAU 2006 Resolution B2, the system at date t as realized from the
ITRS by applying the transformation W (t) in both procedures is the “Terrestrial
Intermediate Reference System” (TIRS). It uses the CIP as its z-axis and the TIO
as its x-axis.

The CIO based procedure realizes an intermediate celestial reference system at
date t that uses the CIP as its z-axis and the CIO as its x-axis. According
to IAU 2006 Resolution B2, it is called the “Celestial Intermediate Reference
System” (CIRS). It uses the “Earth Rotation Angle” in the transformation matrix
R(t), and the two coordinates of the CIP in the GCRS (Capitaine, 1990) in the
transformation matrix Q(t).

The classical procedure realizes an intermediate celestial reference system at date
t that uses the CIP as its z-axis and the equinox as its x-axis. It is called the
“true equinox and equator of date system”. It uses apparent Greenwich Sidereal
Time (GST) in the transformation matrix R(t) and the classical precession and
nutation parameters in the transformation matrix Q(t).

Each of the transformation matrix components W (t), R(t) and Q(t) of Eq. (5.1)
is a series of rotations about the axes 1, 2 and 3 of the coordinate frame. In the
following, R1, R2 and R3 denote rotation matrices with positive angle about the
axes 1, 2 and 3. The position of the CIP both in the ITRS and GCRS is provided
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by the x and y components of the CIP unit vector. These components are called
“coordinates” in the following, and their numerical expressions are multiplied by
the factor 1296000′′/2π in order to represent the approximate values in arcseconds
of the corresponding “angles” (strictly their sines) with respect to the z-axis of
the reference system.

5.4.1 Expression for the transformation matrix for polar motion

The transformation matrix arising from polar motion (i.e. relating ITRS and
TIRS) can be expressed as:

W (t) = R3(−s′) ·R2(xp) ·R1(yp), (5.3)

xp and yp being the “polar coordinates” of the Celestial Intermediate Pole (CIP)
in the ITRS and s′ being a quantity, named “TIO locator”, which provides the
position of the TIO on the equator of the CIP corresponding to the kinematical
definition of the “non-rotating” origin (NRO) in the ITRS when the CIP is moving
with respect to the ITRS due to polar motion.

The expression of s′ as a function of the coordinates xp and yp is:

s′(t) =
1

2

∫ t

t0

(xpẏp − ẋpyp) dt. (5.4)

The use of the quantity s′, which was neglected in the classical form prior to
1 January 2003, is necessary to provide an exact realization of the “instantaneous
prime meridian” (designated by “TIO meridian”).

5.4.2 Expression for the CIO based transformation matrix for Earth rotation

The CIO based transformation matrix arising from the rotation of the Earth
around the axis of the CIP (i.e. relating TIRS and CIRS), can be expressed as:

R(t) = R3(−ERA), (5.5)

where ERA is the Earth Rotation Angle between the CIO and the TIO at date
t on the equator of the CIP, which provides a rigorous definition of the sidereal
rotation of the Earth.

5.4.3 Expression for the equinox based transformation matrix for Earth rotation

The equinox based transformation matrix R(t) for Earth rotation transforms from
the TIRS to the true equinox and equator of date system. It uses Apparent
Greenwich Sidereal Time, i.e. the angle between the equinox and the TIO, to
represent the Earth’s angle of rotation, instead of the ERA.

5.4.4 Expression for the transformation matrix for the celestial motion of the CIP

The CIO based transformation matrix arising from the motion of the CIP in the
GCRS (i.e. relating CIRS and GCRS), can be expressed as:

Q(t) = R3(−E) ·R2(−d) ·R3(E) ·R3(s), (5.6)

E and d being such that the coordinates of the CIP in the GCRS are:

X = sin d cosE, Y = sin d sinE, Z = cos d, (5.7)

and s being a quantity, named “CIO locator”, which provides the position of the
CIO on the equator of the CIP corresponding to the kinematical definition of the
NRO in the GCRS when the CIP is moving with respect to the GCRS, between
the reference epoch and the date t due to precession and nutation. Its expression
as a function of the coordinates X and Y is (Capitaine et al., 2000)

s(t) = −
∫ t

t0

X(t)Ẏ (t)− Y (t)Ẋ(t)

1 + Z(t)
dt− (σ0N0 − Σ0N0), (5.8)

where σ0 and Σ0 are the positions of the CIO at J2000.0 and the x-origin of the
GCRS respectively and N0 is the ascending node of the equator at J2000.0 in the
equator of the GCRS. Or equivalently, within 1 microarcsecond over one century:
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s(t) = −1

2
[X(t)Y (t)−X(t0)Y (t0)] +

∫ t

t0

Ẋ(t)Y (t)dt− (σ0N0 −Σ0N0). (5.9)

The arbitrary constant σ0N0−Σ0N0, which had been conventionally chosen to be
zero in previous references (e.g. Capitaine et al., 2000), was afterwards chosen to
ensure continuity with the classical procedure on 1 January 2003 (see expression
(5.31)).

Q(t) can be given in an equivalent form directly involving X and Y as

Q(t) =


1− aX2 −aXY X

−aXY 1− aY 2 Y

−X −Y 1− a(X2 + Y 2)

 ·R3(s), (5.10)

with a = 1/(1 + cos d), which can also be written, with an accuracy of 1µas, as
a = 1/2 + 1/8(X2 + Y 2). Such an expression of the transformation (5.1) leads to
very simple expressions of the partial derivatives of observables with respect to
the terrestrial coordinates of the CIP, UT1, and celestial coordinates of the CIP.

5.4.5 Expression for the equinox-based transformation matrix for precession-nutation

The equinox based matrix Q(t) that transforms from the true equinox and equator
of date system to the GCRS can be expressed in several ways corresponding to
different parameterization choices.

• One rigorous way is that recommended in the previous version of the IERS
Conventions. It is composed of the classical nutation matrix (using the
nutation angles ∆ψ, ∆ε in longitude and obliquity referred to the ecliptic of
date and the mean obliquity of date, εA), the precession matrix including four
rotations (R1(−ε0) · R3(ψA) · R1(ωA) · R3(−χA)), and a separate rotation
matrix for the frame biases. The precession angles are those of Lieske et
al. (1977), in which ε0 is the obliquity of the ecliptic at J2000.0, ψA and
ωA are the precession quantities in longitude and obliquity referred to the
ecliptic of epoch and χA is the precession of the ecliptic along the equator.

• Another rigorous way is that proposed by Fukushima (2003) as an extension
to the GCRS of the method originally proposed by Williams (1994). This
way is more concise than the previous one, as it can be referred directly to
the GCRS pole and origin without requiring the frame bias to be applied
separately, and there is no need for separate precession and nutation steps.
It is composed of the four rotations: R1(−ε) ·R3(−ψ) ·R1(φ̄) ·R3(γ̄)), where
the angles ε and ψ are each obtained by summing the contributions from the
bias, precession and nutation in obliquity and ecliptic longitude, respectively,
φ̄ is the obliquity of the ecliptic of date on the GCRS equator, and γ̄ is the
GCRS right ascension of the intersection of the ecliptic of date with the
GCRS equator.

5.5 Parameters to be used in the transformation

5.5.1 Motion of the Celestial Intermediate Pole in the ITRS

The standard pole coordinates to be used for the parameters xp and yp appearing
in Eq. (5.3) of Section 5.4.1, if not estimated from the observations, are those
published by the IERS with additional components to account for the effect of
ocean tides (∆x,∆y)ocean tides and for forced terms (∆x,∆y)libration with periods
less than two days in space:

(xp, yp) = (x, y)IERS + (∆x,∆y)ocean tides + (∆x,∆y)libration, (5.11)

where (x, y)IERS are pole coordinates provided by the IERS, (∆x,∆y)ocean tides

are the diurnal and semi-diurnal variations in pole coordinates caused by ocean
tides, and (∆x,∆y)libration are the variations in pole coordinates corresponding to
motions with periods less than two days in space that are not part of the IAU 2000
nutation model. These variations are described in detail below.
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5.5.1.1 Account of ocean tidal and libration effects in pole coordinates xp and yp

The subdaily variations are not part of the polar motion values reported to
and distributed by the IERS and are therefore to be added after interpola-
tion. This is appropriately done by the routine “INTERP.F” of the IERS
EOP Product Center, which interpolates series of xIERS, yIERS values to a
chosen date and then adds the contribution for this date of (i) the tidal
terms (∆x,∆y)ocean tides derived from Tables 8.2a and 8.2b, and (ii) the di-
urnal components of the (∆x,∆y)libration terms, derived from Table 5.1a.
The long-period terms, as well as the secular variation of the libration con-
tribution, are already contained in the observed polar motion and need not
be added to the reported values (x, y)IERS.

5.5.1.2 Variations (∆x,∆y)ocean tides in polar motion

These are tidal variations in Earth orientation considered in Chapter 8,
including diurnal and semi-diurnal variations in pole coordinates caused by
ocean tides. Tables 8.2a and 8.2b provide the amplitudes and arguments for
the 71 tidal constituents of those diurnal and semi-diurnal variations that
have been derived from the routine “ORTHO EOP.F” based on the model
from Ray et al. (1994). That routine is available on the website of the IERS
Conventions (see Chapter 8).

5.5.1.3 Variations (∆x,∆y)libration in polar motion

According to the definition of the CIP (IAU 2000 Resolution B1.7; see Ap-
pendix A7), forced motions with periods less than two days in space are not
included in the IAU 2000 nutation model and therefore have to be considered
using a model for the corresponding motion of the pole in the ITRS.

Recent models for rigid Earth nutation (Bretagnon et al., 1997; Folgueira
et al., 1998a and b; Souchay et al., 1999; Roosbeek, 1999; Bizouard et al.,
2000 and 2001) include prograde diurnal and prograde semi-diurnal terms
with respect to the GCRS with amplitudes up to ∼ 15 µas. The semi-diurnal
terms in nutation have also been provided both for rigid and nonrigid Earth
models based on Hamiltonian formalism (Getino et al., 2001; Escapa et al.,
2002 and 2003).

These diurnal and semi-diurnal nutations, which, according to Chao et al.
(1991), are designated here as “libration”, originate from the direct effect of
the external (mainly luni-solar) torque on the non-axisymmetric part of the
Earth as expressed by the non-zonal terms of the geopotential. This effect
is also called the “tidal gravitation” effect, and has been designated in the
past as the “nutation” effect on polar motion.

The prograde diurnal nutations correspond to prograde and retrograde long-
period variations in polar motion including the linear term, and the prograde
semi-diurnal nutations correspond to prograde diurnal variations in polar
motion (see for example Folgueira et al., 2001). A table for operational use
of the model for these variations in polar motion for a nonrigid Earth has
been provided by an ad hoc Working Group (Brzeziński, 2002; Brzeziński and
Mathews, 2003), based on nonrigid Earth models and developments of the
tide generating potential (TGP; Brzeziński, 2001; Brzeziński and Capitaine,
2003; Mathews and Bretagnon, 2003). All components with amplitudes
greater than 0.5µas are given in Table 5.1a. The amplitudes of the diurnal
terms are in very good agreement with those estimated by Getino et al.
(2001). The contribution from the triaxiality of the core to the diurnal
terms, while it can exceed the adopted cut-off level (Escapa et al., 2002;
Mathews and Bretagnon, 2003), has not been taken into account in the table
due to the large uncertainty in the triaxiality of the core (Brzeziński and
Capitaine, 2003; Dehant, 2002, private communication). The coefficients of
Table 5.1a are based on Stokes coefficients of the JGM-3 geopotential model
(Tapley et al., 1996), but any of the geopotential models commonly used in
current precision orbital analysis would give values that would agree within
the adopted cut-off level of 0.1 µas with those of Table 5.1a.

The diurnal components of (∆x,∆y)libration can be computed with the routine
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PMSDNUT2.F, available on the Conventions Center website at <2>. These di-
urnal components (namely, the 10 terms listed in Table 5.1a with periods near
1 day) should be considered similarly to the diurnal and semi-diurnal variations
due to ocean tides (see above).

Note that the 10 diurnal terms of Table 5.1a due to the influence of tidal gravi-
tation on the non-axisymmetric part of the Earth are a subset of the 41 diurnal
terms of Table 8.2a with, for each common term, an amplitude about 10 times
lower than the corresponding amplitude for the variation in UT1 (or LOD) caused
by ocean tides provided in Table 8.2a.

Table 5.1a: Coefficients of sin(argument) and cos(argument) in (∆x,∆y)libration due to tidal gravita-
tion (of degree n) for a nonrigid Earth. Listed are all terms with amplitudes greater than
0.5 muas. Units are µas, γ denotes GMST+π (where GMST = ERA + precession in RA
(see Eq. (5.32))). The expressions for the fundamental arguments (Delaunay arguments)
are given by Eq. (5.43).

Argument Doodson Period xp yp

n Tide γ l l′ F D Ω number (days) sin cos sin cos

4 0 0 0 0 0 −1 055.565 6798.3837 0.0 0.6 −0.1 −0.1
3 0 −1 0 1 0 2 055.645 6159.1355 1.5 0.0 −0.2 0.1
3 0 −1 0 1 0 1 055.655 3231.4956 −28.5 −0.2 3.4 −3.9
3 0 −1 0 1 0 0 055.665 2190.3501 −4.7 −0.1 0.6 −0.9
3 0 1 1 −1 0 0 056.444 438.35990 −0.7 0.2 −0.2 −0.7
3 0 1 1 −1 0 −1 056.454 411.80661 1.0 0.3 −0.3 1.0
3 0 0 0 1 −1 1 056.555 365.24219 1.2 0.2 −0.2 1.4
3 0 1 0 1 −2 1 057.455 193.55971 1.3 0.4 −0.2 2.9
3 0 0 0 1 0 2 065.545 27.431826 −0.1 −0.2 0.0 −1.7
3 0 0 0 1 0 1 065.555 27.321582 0.9 4.0 −0.1 32.4
3 0 0 0 1 0 0 065.565 27.212221 0.1 0.6 0.0 5.1
3 0 −1 0 1 2 1 073.655 14.698136 0.0 0.1 0.0 0.6
3 0 1 0 1 0 1 075.455 13.718786 −0.1 0.3 0.0 2.7
3 0 0 0 3 0 3 085.555 9.1071941 −0.1 0.1 0.0 0.9
3 0 0 0 3 0 2 085.565 9.0950103 −0.1 0.1 0.0 0.6

2 Q′1 1 −1 0 −2 0 −1 135.645 1.1196992 −0.4 0.3 −0.3 −0.4
2 Q1 1 −1 0 −2 0 −2 135.655 1.1195149 −2.3 1.3 −1.3 −2.3
2 ρ1 1 1 0 −2 −2 −2 137.455 1.1134606 −0.4 0.3 −0.3 −0.4
2 O′1 1 0 0 −2 0 −1 145.545 1.0759762 −2.1 1.2 −1.2 −2.1
2 O1 1 0 0 −2 0 −2 145.555 1.0758059 −11.4 6.5 −6.5 −11.4
2 M1 1 −1 0 0 0 0 155.655 1.0347187 0.8 −0.5 0.5 0.8
2 P1 1 0 0 −2 2 −2 163.555 1.0027454 −4.8 2.7 −2.7 −4.8
2 K1 1 0 0 0 0 0 165.555 0.9972696 14.3 −8.2 8.2 14.3
2 K′1 1 0 0 0 0 −1 165.565 0.9971233 1.9 −1.1 1.1 1.9
2 J1 1 1 0 0 0 0 175.455 0.9624365 0.8 −0.4 0.4 0.8

Rate of secular polar motion (µas/y) due to the zero frequency tide

4 0 0 0 0 0 0 555.555 −3.8 −4.3

5.5.2 Position of the Terrestrial Intermediate Origin in the ITRS

The quantity s′ (i.e. the TIO locator) appearing in Eq. (5.3) and expressed by
Eq. (5.4) is sensitive only to the largest variations in polar motion. Some compo-
nents of s′ have to be evaluated, in principle, from the measurements and can be

2ftp://tai.bipm.org/iers/conv2010/chapter5/
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extrapolated using the IERS data. Its main component can be written as:

s′ = −0.0015
(
a2
c/1.2 + a2

a

)
t, (5.12)

ac and aa being the average amplitudes (in as) of the Chandlerian and annual
wobbles, respectively, in the period considered (Capitaine et al., 1986). The value
of s′ will therefore be less than 0.4 mas through the next century, even if the am-
plitudes for the Chandlerian and annual wobbles reach values of the order of 0.5′′

and 0.1′′, respectively. Using the current mean amplitudes for the Chandlerian
and annual wobbles gives (Lambert and Bizouard, 2002):

s′ = −47 µas t. (5.13)

5.5.3 Earth Rotation Angle

The conventional relationship defining UT1 from the Earth Rotation Angle (ERA)
to be used in Eq. (5.5) of Section 5.4.2 is that given by Capitaine et al. (2000):

ERA(Tu) = 2π(0.7790572732640 + 1.00273781191135448Tu), (5.14)

where Tu=(Julian UT1 date−2451545.0), and UT1=UTC+(UT1−UTC), or equiv-
alently (modulo 2π), in order to reduce possible rounding errors,

ERA(Tu) = 2π(UT1 Julian day fraction

+0.7790572732640 + 0.00273781191135448Tu).
(5.15)

This definition of UT1 based on the CIO is insensitive at the microarcsecond
level to the precession-nutation model and to the observed celestial pole offsets.
Therefore, in processing observational data, the quantity s provided by Table 5.2d
must be considered as independent of observations.

The above relationship also provides the ERA corresponding to a given UT1, the
quantity UT1−UTC to be used (if not estimated from the observations) being the
IERS value. Note that, for 0h UT1, the UT1 Julian day fraction in Eq. (5.15) is
0.5.

Similarly to polar motion (cf. Section 5.5.1), additional components should be
added to the values published by the IERS for UT1 and LOD to account for the
effects of ocean tides and libration. These effects are described in detail below.

5.5.3.1 Account of ocean tidal and libration effects in UT1 and LOD

The subdaily variations are not part of the UT1 or LOD values reported
to and distributed by the IERS and are therefore to be added after in-
terpolation. This is appropriately done for the first effect by the routine
“INTERP.F” of the IERS EOP Product Center, which interpolates series of
UT1IERS and LODIERS values to a chosen date and then adds the contri-
bution for this date of the tidal terms ∆UT1ocean tides, or ∆LODocean tides,
derived from Tables 8.3a and 8.3b. The semi-diurnal components of the li-
bration contribution ∆UT1libration, or ∆LODlibration derived from Table 5.1b
should be included in that routine.

5.5.3.2 Variations ∆UT1ocean tides and ∆LODocean tides in UT1 and LOD

These are tidal variations in Earth orientation considered in Chapter 8,
including diurnal and semi-diurnal variations in UT1 or LOD caused by
ocean tides. Tables 8.3a and 8.3b provide the amplitudes and arguments
for the 71 tidal constituents of those diurnal and semi-diurnal variations
that have been derived from the routine “ORTHO EOP.F” (available on the
website of the IERS Conventions at <3> ) based on the model from Ray
et al. (1994).

3ftp://tai.bipm.org/iers/conv2010/chapter8/
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5.5.3.3 Variations ∆UT1libration and ∆LODlibration in UT1 and LOD

The axial component of Earth rotation contains small variations due to the
direct effect of the external (mainly luni-solar) torque on the non-axisymme-
tric part of the Earth as expressed by the non-zonal terms of the geopo-
tential. This effect was theoretically predicted by Tisserand (1891) and
Kinoshita (1977), but was neglected in current practical applications due
to its very small size (maximum peak-to-peak variation of about 0.1 mas,
i.e. 0.007 ms in UT1). More complete descriptions were published when
the effect, also designated as “tidal gravitation”, became observationally de-
tectable by, e.g. Chao et al. (1991), Wünsch (1991), Chao et al. (1996) and
Brzeziński and Capitaine (2003; 2010).

An analytical solution for the sub-diurnal libration in UT1 has been derived
by Brzeziński and Capitaine (2003) for the structural model of the Earth
consisting of an elastic mantle and a liquid core which are not coupled to
each other. The reference solution for the rigid Earth has been computed
by using the satellite-determined coefficients of geopotential and the recent
developments of the tide generating potential. Table 5.1b provides the am-
plitudes and arguments for all components in UT1 and LOD with amplitudes
greater than 0.5µas (i.e. 0.033µs in UT1.) It consists of 11 semi-diurnal har-
monics due to the influence of the TGP term u22 on the equatorial flattening
of the Earth expressed by the Stokes coefficients C22, S22. There is excellent
agreement between the values for the rigid Earth and the amplitudes derived
by Wünsch (1991), except for the term with the tidal code ν2, which seems
to have been overlooked in the latter model. The amplitudes computed for
an elastic Earth with liquid core are in reasonable agreement with those
derived by Chao et al. (1991), but the latter model was not complete.

Table 5.1b: Coefficients of sin(argument) and cos(argument) of semi-diurnal variations in UT1 and
LOD due to libration for a non-rigid Earth. Listed are all terms with amplitudes of UT1
greater than 0.033 µs. Units are µs, γ denotes GMST+π. Expressions for the fundamental
arguments are given by Eq. (5.43).

Argument Doodson Period UT1 LOD

Tide γ l l′ F D Ω number (days) sin cos sin cos

2N2 2 −2 0 −2 0 −2 235.755 0.5377239 0.05 −0.03 −0.3 −0.6

µ2 2 0 0 −2 −2 −2 237.555 0.5363232 0.06 −0.03 −0.4 −0.7
N2 2 −1 0 −2 0 −2 245.655 0.5274312 0.35 −0.20 −2.4 −4.2
ν2 2 1 0 −2 −2 −2 247.455 0.5260835 0.07 −0.04 −0.5 −0.8

M′2 2 0 0 −2 0 −1 255.545 0.5175645 −0.07 0.04 0.5 0.8
M2 2 0 0 −2 0 −2 255.555 0.5175251 1.75 −1.01 −12.2 −21.3
L2 2 1 0 −2 0 −2 265.455 0.5079842 −0.05 0.03 0.3 0.6
T2 2 0 −1 −2 2 −2 272.556 0.5006854 0.05 −0.03 −0.3 −0.6
S2 2 0 0 −2 2 −2 273.555 0.5000000 0.76 −0.44 −5.5 −9.5
K2 2 0 0 0 0 0 275.555 0.4986348 0.21 −0.12 −1.5 −2.6
K′2 2 0 0 0 0 −1 275.565 0.4985982 0.06 −0.04 −0.4 −0.8

Note that the 11 semi-diurnal terms of Table 5.1b due to the influence of tidal
gravitation on the triaxiality of the Earth are a subset of the 30 semi-diurnal
terms of Table 8.3b, with, for each common term, an amplitude about 10
times lower than the corresponding amplitude for the variation in UT1 (or
LOD) caused by ocean tides provided in Table 8.3b. Nevertheless, the max-
imum peak-to-peak size of the triaxiality effect on UT1 is about 0.105 mas,
hence definitely above the current uncertainty of UT1 determinations. A
comparison with the corresponding model of prograde diurnal polar motion
associated with the Earth’s libration (Table 5.1a) shows that the two effects
are of similar size and that there is consistency between the underlying dy-
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namical models and the parameters employed. The sub-diurnal libration in
UT1, ∆UT1libration, can be computed with the routine UTLIBR.F, provided
by A. Brzeziński, available on the Conventions Center website at <2>.

5.5.4 Forced motion of the Celestial Intermediate Pole in the GCRS

The coordinates of the CIP in the GCRS to be used for the parameters X and Y
appearing in Eq. (5.10) of Section 5.4.4 can be given by developments as function of
time of those quantities. Developments valid at the microarcsecond level, based on
the IAU 2006 precession and IAU 2000A nutation (see Section 5.6 for more details)
and on their corresponding pole and equinox offsets at J2000.0 with respect to
the pole of the GCRS have been computed (Capitaine and Wallace, 2006). They
replace the previous developments based on the IAU 2000 model for precession-
nutation and frame biases that had been provided by Capitaine et al. (2003a) and
in the IERS 2003 Conventions.

The IAU 2006/2000A developments are as follows:

X = −0.016617′′ + 2004.191898′′t− 0.4297829′′t2

−0.19861834′′t3 + 0.000007578′′t4 + 0.0000059285′′t5

+
∑
i[(as,0)i sin(ARGUMENT) + (ac,0)i cos(ARGUMENT)]

+
∑
i[(as,1)it sin(ARGUMENT) + (ac,1)it cos(ARGUMENT)]

+
∑
i[(as,2)it

2 sin(ARGUMENT) + (ac,2)it
2 cos(ARGUMENT)]

+ · · · ,

Y = −0.006951′′ − 0.025896′′t− 22.4072747′′t2

+0.00190059′′t3 + 0.001112526′′t4 + 0.0000001358′′t5

+
∑
i[(bc,0)i cos(ARGUMENT) + (bs,0)i sin(ARGUMENT)]

+
∑
i[(bc,1)it cos(ARGUMENT) + (bs,1)i t sin(ARGUMENT)]

+
∑
i[(bc,2)it

2 cos(ARGUMENT) + (bs,2)it
2 sin(ARGUMENT)]

+ · · · ,

(5.16)

the parameter t being given by expression (5.2) and ARGUMENT being a function
of the fundamental arguments of the nutation theory, whose expressions are given
by Eq. (5.43) for the lunisolar ones and Eq. (5.44) for the planetary ones. The full
IAU 2000/2006 series are available electronically on the IERS Conventions Center
website (Tables 5.2a and 5.2b) at < 2>, tab5.2a.txt for the X coordinate and
tab5.2b.txt for the Y coordinate. The polynomial terms of X and Y are given
in (5.16). An extract from Tables 5.2a and 5.2b for the largest non-polynomial
terms in X and Y is given below.

The numerical values of the coefficients of the polynomial part of X and Y
(cf. (5.16)) are derived from the development as a function of time of the pre-
cession in longitude and obliquity and pole offset at J2000.0 and the amplitudes
(as,j)i, (ac,j)i, (bc,j)i, (bs,j)i for j = 0, 1, 2, ... are derived from the amplitudes
of the precession and nutation series. The amplitudes (as,0)i, (bc,0)i of the sine
and cosine terms in X and Y respectively are equal to the amplitudes Ai × sin ε0
and Bi of the series for nutation in longitude [× sin ε0] and obliquity, except for a
few terms in each coordinate X and Y which contain a contribution from crossed-
nutation effects. The coordinates X and Y contain Poisson terms in t sin, t cos,
t2 sin, t2 cos, ... which originate from crossed terms between precession and nuta-
tion.
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Table 5.2a: Extract from Table 5.2a (available at < 2>) for the largest non-polynomial terms (i.e. co-
efficients of the Fourier and Poisson terms, with t in Julian centuries) in the development
(5.16) for X(t) compatible with the IAU 2006/2000A precession-nutation model (unitµas).
The expressions for the fundamental arguments appearing in columns 4 to 17 are given
by Eq. (5.43) and Eq. (5.44). (Because the largest terms are all luni-solar, columns 9-17
contain only zeros in the extract shown.)

i (as,0)i (ac,0)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 −6844318.44 1328.67 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −523908.04 −544.75 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 −90552.22 111.23 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 82168.76 −27.64 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 58707.02 470.05 0 1 0 0 0 0 0 0 0 0 0 0 0 0

.....
i (as,1)i (ac,1)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1307 −3309.73 205833.11 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1308 198.97 12814.01 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
1309 41.44 2187.91 0 0 2 0 2 0 0 0 0 0 0 0 0 0

.....

The contributions (in µas) to expression (5.16) from the frame biases are

dX = −16617.0− 1.6 t2 + 0.7 cos Ω,

dY = −6819.2− 141.9 t+ 0.5 sin Ω,
(5.17)

the first term in each coordinate being the contribution from the celestial pole
offset at J2000.0 and the following ones from the equinox offset at J2000.0, also
called “frame bias in right ascension.”

The polynomial changes in X and Y due to the change in the precession model
from IAU 2000 to IAU 2006 can be written in µas as (Capitaine and Wallace,
2006, after correcting a typographical error in the t2 term of dY ):

dX = 155 t− 2564 t2 + 2 t3 + 54 t4,

dY = −514 t− 24 t2 + 58 t3 − 1 t4 − 1 t5.
(5.18)

In addition, there are slight changes in a few periodic terms of the IAU 2006
version of the X,Y series with respect to the IAU 2000 version, corresponding to
additional Poisson terms in nutation caused by introducing the IAU 2006 J2 rate
value (see Section 5.6.3). The largest changes (Capitaine and Wallace, 2006) in
µas are:

dXJ2d = 18.8 t sin Ω + 1.4 t sin 2(F −D + Ω),

dYJ2d = −25.6 t cos Ω− 1.6 t cos 2(F −D + Ω).
(5.19)

The periodic terms expressed by (5.19) are included in the IAU 2006/2000A ver-
sion of the X,Y series. The difference between the IAU 2006 and IAU 2000A
expressions for X and Y is available electronically on the IERS Conventions Cen-
ter website (Table 5.2f) at < 2> in file tab5.2f.txt.

The relationships between the coordinates X and Y and the precession-nutation
quantities are (Capitaine, 1990):

X = X̄ + ξ0 − dα0 Ȳ ,

Y = Ȳ + η0 + dα0 X̄,
(5.20)

where ξ0 and η0 are the celestial pole offsets at the basic epoch J2000.0 and dα0

the right ascension of the mean equinox of J2000.0 in the GCRS (i.e. frame bias
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Table 5.2b: Extract from Table 5.2b (available at < 2>) for the largest non-polynomial terms (i.e. co-
efficients of the Fourier and Poisson terms, with t in Julian centuries) in the development
(5.16) Y (t) compatible with the IAU 2006/2000A precession-nutation model (unitµas).
The expressions for the fundamental arguments appearing in columns 4 to 17 are given
by Eq. (5.43) and Eq. (5.44). (Because the largest terms are all luni-solar, columns 9-17
contain only zeros in the extract shown.)

i (bs,0)i (bc,0)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 1538.18 9205236.26 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −458.66 573033.42 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 137.41 97846.69 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 −29.05 −89618.24 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 −17.40 22438.42 0 1 2 −2 2 0 0 0 0 0 0 0 0 0

.....
i (bs,1)i (bc,1)i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

963 153041.79 853.32 0 0 0 0 1 0 0 0 0 0 0 0 0 0
964 11714.49 −290.91 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
965 2024.68 −51.26 0 0 2 0 2 0 0 0 0 0 0 0 0 0

.....

in right ascension). (See the numbers provided below in (5.21) and (5.33) for these
quantities.)

The mean equinox of J2000.0 to be considered is not the “rotational dynamical
mean equinox of J2000.0” as used in the past, but the “inertial dynamical mean
equinox of J2000.0” to which the recent numerical or analytical solutions refer.
The latter is associated with the ecliptic in the inertial sense, which is the plane
perpendicular to the angular momentum vector of the orbital motion of the Earth-
Moon barycenter as computed from the velocity of the barycenter relative to an
inertial system. The rotational equinox is associated with the ecliptic in the rota-
tional sense, which is perpendicular to the angular momentum vector computed
from the velocity referred to the rotating orbital plane of the Earth-Moon barycen-
ter. (The difference between the two angular momenta is the angular momentum
associated with the rotation of the orbital plane.) See Standish (1981) for more
details. The numerical value for dα0 as derived from Chapront et al. (2002) to be
used in expression (5.20) is:

dα0 = (−0.01460± 0.00050)′′. (5.21)

Quantities X̄ and Ȳ are given by:

X̄ = sinω sinψ,

Ȳ = − sin ε0 cosω + cos ε0 sinω cosψ
(5.22)

where ε0 (= 84381.406′′) is the IAU 2006 value for the obliquity of the ecliptic at
J2000.0 (from Chapront et al., 2002), ω, and ψ is the longitude, on the ecliptic of
epoch, of the node of the true equator of date on the fixed ecliptic of epoch; these
quantities are such that

ω = ωA + ∆ε1; ψ = ψA + ∆ψ1, (5.23)

where ψA and ωA are the precession quantities in longitude and obliquity (Lieske
et al., 1977) referred to the ecliptic of epoch and ∆ψ1, ∆ε1 are the nutation angles
in longitude and obliquity referred to the ecliptic of epoch. (See the numerical
developments provided for the precession quantities in (5.39).) ∆ψ1, ∆ε1 can be
obtained from the nutation angles ∆ψ, ∆ε in longitude and obliquity referred to
the ecliptic of date. The following formulation from Aoki and Kinoshita (1983) is
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accurate to better than one microarcsecond after one century:

∆ψ1 sinωA = ∆ψ sin εA cosχA −∆ε sinχA,

∆ε1 = ∆ψ sin εA sinχA + ∆ε cosχA,
(5.24)

εA being the mean obliquity of date and χA the precession of the ecliptic along
the equator (Lieske et al., 1977).

As VLBI observations have shown that there are deficiencies in the IAU 2006/2000A
precession-nutation model of the order of 0.2 mas, mainly due to the fact that the
free core nutation (FCN) (see Section 5.5.5) is not part of the model, the IERS will
continue to publish observed estimates of the corrections to the IAU precession-
nutation model. The observed differences with respect to the conventional celestial
pole position defined by the models are monitored and reported by the IERS as
“celestial pole offsets.” Such time-dependent offsets from the direction of the pole
of the GCRS must be provided as corrections δX and δY to the X and Y coordi-
nates. These corrections can be related to the equinox based celestial pole offsets
δψ (along the ecliptic of date) and δε (in the obliquity of date) using the relation-
ships (5.22) between X and Y and the precession-nutation quantities and (5.24)
for the transformation from ecliptic of date to ecliptic of epoch. The relationship
(5.25) below, which is to first order in the quantities, ensures an accuracy of one
microarcsecond for one century, for values of δψ and δε lower than 1 mas:

δX = δψ sin εA + (ψA cos ε0 − χA)δε,

δY = δε− (ψA cos ε0 − χA)δψ sin εA.
(5.25)

These observed offsets include the contribution of the FCN described in Sec-
tion 5.5.5. Using these offsets, the corrected celestial position of the CIP is given
by

X = X(IAU 2006/2000) + δX, Y = Y (IAU 2006/2000) + δY. (5.26)

This is practically equivalent to replacing the transformation matrix Q with the
rotation

Q̃ =


1 0 δX

0 1 δY

−δX −δY 1

QIAU, (5.27)

where QIAU represents the Q(t) matrix based on the IAU 2006/2000 precession-
nutation model.

5.5.5 Free Core Nutation

Free core nutation is a free retrograde diurnal motion of the Earth’s rotation axis
with respect to the Earth caused by the interaction of the mantle and the fluid,
ellipsoidal core as it rotates. Due to the definition of the CIP, this free motion
appears as a motion of the CIP in the GCRS. Because this effect is a free motion
with time-varying excitation and damping resulting in a variable amplitude and
phase, a FCN model was not included in the IAU 2000A nutation model. As a
result, a quasi-periodic un-modeled motion of the CIP in the GCRS at the 0.1–0.3
mas level still exists after the IAU 2006/2000A model has been taken into account.

Depending on accuracy requirements, the lack of a FCN model should cause neg-
ligible problems. However, for the most stringent accuracy applications, a FCN
model may be incorporated to account for the FCN contribution to the CIP mo-
tion in the GCRS.

The FCN model of Lambert (2007) can be found at <4> and a copy is kept at
the IERS Conventions Center website < 2>. It is expected that the coefficients of
the model will be updated regularly by the IERS to describe the most currently

4http://syrte.obspm.fr/∼lambert/fcn/
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Table 5.2c: Table for the coefficients of the empirical model of the retrograde FCN during the interval
1984-2010 (unit µas).

Year MJD XC XS SX

1984.0 45700.0 4.5 −36.6 19.7
1985.0 46066.0 −141.8 −105.3 11.1
1986.0 46431.0 −246.6 −170.2 9.5
1987.0 46796.0 −281.9 −159.2 8.6
1988.0 47161.0 −255.0 −43.6 8.1
1989.0 47527.0 −210.5 −88.6 7.3
1990.0 47892.0 −187.8 −57.4 6.4
1991.0 48257.0 −163.0 26.3 5.5
1992.0 48622.0 −141.2 44.6 4.8
1993.0 48988.0 −128.7 28.6 4.6
1994.0 49353.0 −108.9 19.5 3.9
1995.0 49718.0 −96.7 19.7 3.1
1996.0 50083.0 −104.0 11.9 2.9
1997.0 50449.0 −126.8 30.4 2.8
1998.0 50814.0 −81.9 25.0 2.6
1999.0 51179.0 −19.7 −20.1 2.6
2000.0 51544.0 10.8 −76.8 2.7
2001.0 51910.0 65.6 −137.4 2.5
2002.0 52275.0 78.2 −127.1 2.3
2003.0 52640.0 108.7 −42.3 2.1
2004.0 53005.0 117.6 −1.4 2.2
2005.0 53371.0 115.7 5.7 2.9
2006.0 53736.0 159.7 24.2 4.2
2007.0 54101.0 154.7 61.2 4.5
2008.0 54466.0 161.1 98.4 4.3
2009.0 54832.0 143.4 147.0 4.5
2010.0 55197.0 81.8 152.9 5.6

observed FCN motion of the CIP. Successive versions are identified by a date in-
cluded in their name, the current realization (fcnnut100701) has been established
on July 1st, 2010.

The model describes the quantities to be added to the X, Y coordinates of the
CIP in the GCRS to account for the FCN effect. It provides this information
in the form of a time-varying sinusoidal representation that assumes a constant
period of P = −430.23 days. The equations for the model are

XFCN = XS sin(σt) +XC cos(σt),

YFCN = YS sin(σt) + YC cos(σt),
(5.28)

where σ is the angular frequency of the FCN (= 2π/P rad/d) and t is given in
days since J2000.0.

Table 5.2c provides the coefficients for the model fcnnut100701. Older versions
and updates can be found at < 4>. XC and XS are the amplitudes of the cosine
and sine terms, respectively, and are piecewise defined in time. SX is the formal
error of the amplitude estimates. All amplitudes are in units of microarcseconds.
Note that the values for YS and YC can be determined from the relationships
YS = −XC and YC = XS .

Over the period for which the model has been determined, the model should
provide accuracies better than 0.05 mas rms while for the period of extrapolation
the model should provide accuracies better than 0.1 mas rms until the next annual
update is provided.
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Note that the unmodeled FCN motion of the CIP is included in the published
IERS celestial pole offsets dX and dY. These offsets should not be applied when
the FCN model is used.

5.5.6 Position of the Celestial Intermediate Origin in the GCRS

The numerical development of the quantity s (i.e. the CIO locator) appearing in
Eq. (5.10), compatible with the IAU 2006/2000A precession-nutation model as
well as the corresponding celestial offset at J2000.0, has been derived in a way
similar to that based on the IERS Conventions 2003 (Capitaine et al., 2003b). It
results from expression (5.8) for s using the developments of X and Y as functions
of time given by (5.16) (Capitaine et al., 2003a). The numerical development is
provided for the quantity s+XY/2, which requires fewer terms to reach the same
accuracy than a direct development for s.

Table 5.2d: Development of s(t) compatible with the IAU 2006/2000A precession-nutation model: all
terms exceeding 0.5µas during the interval 1975–2025 (unit µas). The expressions for the
fundamental arguments appearing in column 1 are given by Eq. (5.43).

s(t) = −XY/2 + 94 + 3808.65t− 122.68t2 − 72574.11t3 +
∑
k Ck sinαk

+1.73t sin Ω + 3.57t cos 2Ω + 743.52t2 sin Ω + 56.91t2 sin(2F − 2D + 2Ω)
+9.84t2 sin(2F + 2Ω)− 8.85t2 sin 2Ω

Argument αk Amplitude Ck
Ω −2640.73
2Ω −63.53
2F − 2D + 3Ω −11.75
2F − 2D + Ω −11.21
2F − 2D + 2Ω +4.57
2F + 3Ω −2.02
2F + Ω −1.98
3Ω +1.72
l′ + Ω +1.41
l′ − Ω +1.26
l + Ω +0.63
l − Ω +0.63

The constant term for s, which was previously chosen so that s(J2000.0) = 0,
was subsequently fitted (Capitaine et al., 2003b) so as to ensure continuity of
UT1 at the date of change (1 January 2003) consistent with the Earth Rotation
Angle (ERA) relationship and the current VLBI procedure for estimating UT1
(see (5.31)).

The complete series for s + XY/2 with all terms larger than 0.1µas is available
electronically on the IERS Conventions Center website < 2> in file tab5.2d.txt

and the terms larger than 0.5µas over 25 years in the development of s are pro-
vided in Table 5.2d with µas accuracy. (There is no term where the change from
IAU 2000 precession to IAU 2006 precession causes a change in s larger than 1µas
after one century.)

5.5.7 ERA based expressions for Greenwich Sidereal Time

Greenwich Sidereal Time (GST), which refers to the equinox, is related to the
“Earth Rotation Angle” ERA, that refers to the Celestial Intermediate Origin
(CIO), by the following relationship (Aoki and Kinoshita, 1983; Capitaine and
Gontier, 1993) at the microarcsecond level:

GST = dT0 + ERA +

∫ t

t0

˙̂
(ψA + ∆ψ1) cos(ωA + ∆ε1)dt− χA + ∆ψ cos εA + ∆ψ1 cosωA, (5.29)
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∆ψ1, ∆ε1, given by (5.24), being the nutation angles in longitude and obliquity
referred to the ecliptic of epoch and χA, whose development is given in (5.40), the
precession of the ecliptic along the equator (i.e. the right ascension component of
the precession of the ecliptic).

This can be written as:

GST = ERA(UT1)− EO, (5.30)

where EO is the “equation of the origins”, defined by:

EO = − dT0 −
∫ t

t0

˙̂
(ψA + ∆ψ1) cos(ωA + ∆ε1)dt+ χA −∆ψ cos εA + ∆ψ1 cosωA, (5.31)

which is the CIO based right ascension of the equinox along the moving equator.
The EO accounts for the accumulated precession and nutation in right ascension
from J2000.0 to the date t; the constant term dT0 was chosen to ensure continuity
in UT1 at the date of change. A numerical expression for EO consistent with
the IAU 2006/2000A precession-nutation model was provided by Capitaine et al.
(2003c). The expression was obtained using computations similar to those per-
formed for s and following a procedure, described below, that ensured consistency
at the microarcsecond level among the transformations, as well as continuity in
UT1 at the date of change (Capitaine et al., 2003b).

The full series providing the expression for Greenwich Sidereal Time based on the
IAU 2006/2000A precession-nutation model are available on the IERS Conven-
tions Center website < 2> in file tab5.2e.txt; the terms larger than 0.5µas over
25 years in the development of the EO are provided in Table 5.2e. to 0.01 mi-
croarcsecond accuracy (i.e. with two digits).

Table 5.2e: Development of EO compatible with IAU 2006/2000A precession-nutation model: all
terms exceeding 0.5µas during the interval 1975–2025 (unitµas).

EO = − 0.014506′′ − 4612.156534′′t− 1.3915817′′t2

+ 0.00000044′′t3 − ∆ψ cos εA −
∑
k C
′
k sinαk

Argument αk Amplitude C ′k
Ω +2640.96
2Ω +63.52
2F − 2D + 3Ω +11.75
2F − 2D + Ω +11.21
2F − 2D + 2Ω −4.55
2F + 3Ω +2.02
2F + Ω +1.98
3Ω −1.72
l′ + Ω −1.41
l′ − Ω −1.26
l + Ω −0.63
l − Ω −0.63

The C′k coefficients are similar to the Ck coefficients appearing in Table 5.2d pro-
viding the development for s, and are equal to these coefficients up to 1µas. The
last term in the EO expression, i.e. −

∑
k C
′
k sinαk, comprises the complementary

terms to be subtracted from the classical “equation of the equinoxes,” ∆ψ cos εA,
to provide the relationship between GST and ERA with microarcsecond accu-
racy. These were introduced in the IERS Conventions 2003, replacing the two
complementary terms provided in the IERS Conventions 1996. A secular term
similar to that appearing in the quantity s is included in expression (5.31). This
expression for GST used in the equinox based transformation ensures consistency
with the CIO based transformation at the microarcsecond level after one century,
using expressions (5.14) for ERA, (5.16) for the celestial coordinates of the CIP
and Table 5.2d for s.
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As an alternative to using the developments set out in Table 5.2e, the EO can be
calculated from the quantity s and the classical (i.e. equinox based) nutation ×
precession × bias matrix: see Wallace and Capitaine (2006), Eq. (5.16). This is
the method used by SOFA.

The numerical values chosen for the constant term dT0 in GST to achieve conti-
nuity in UT1 at the transition date (1 January 2003), and for the corresponding
constant term in s are dT0 = + 14506µas and s0 = + 94µas. The polynomial
part of GST (i.e. of ERA(UT1) − EO(t)) provides the IAU 2006 expression for
Greenwich Mean Sidereal Time, GMST (Capitaine et al., 2003c):

GMST = ERA(UT1) + 0.014506′′ + 4612.156534′′t+ 1.3915817′′t2 − 0.00000044′′t3

− 0.000029956′′t4 − 0.0000000368′′t5 .
(5.32)

This expression for GMST clearly distinguishes between ERA, which is expressed
as a function of UT1, and the EO (i.e. mainly the accumulated precession-nutation
in right ascension), which is expressed as a function of TDB (or, in practice, TT),
in contrast to the GMST1982(UT1) expression (Aoki et al., 1982), which used only
UT1. The difference between these two processes gives rise to a term in GMST
of (TT−UT1) multiplied by the speed of precession in right ascension. Using
TT−TAI = 32.184 s, this was: [47+1.5(TAI−UT1)]µas, where TAI−UT1 is in
seconds. On 1 January 2003, this difference was about 94µas (see Gontier in
Capitaine et al., 2002), using the value of 32.3 s for TAI−UT1. This is included
in the values for dT0 and s0.

5.6 Description of the IAU 2000/2006 precession-nutation model

The following sections describe the main features of the IAU 2006/2000 precession-
nutation. Comparisons of the IAU 2000/2006 precession-nutation with other mod-
els and VLBI observations can be found in Capitaine et al. (2009).

5.6.1 The IAU 2000A and IAU 2000B nutation model

The IAU 2000A model, developed by Mathews et al., (2002) and denoted MHB-
2000, is based on the REN2000 rigid Earth nutation series of Souchay et al. (1999)
for the axis of figure (available at: ftp://syrte.obspm.fr/pub/REN2000/). The
REN2000 solution is provided as a series of luni-solar and planetary nutations in
longitude and obliquity, referred to the ecliptic of date, expressed as “in-phase”
and “out-of-phase” components with their time variations. The sub-diurnal terms
arising for the imperfect axial symmetry of the Earth are not part of this solution,
so that the axis of reference of the nutation model be compliant with the definition
of the CIP.

The rigid Earth nutation was transformed to the non-rigid Earth nutation by
applying the MHB2000 “transfer function” to the full REN2000 series of the cor-
responding prograde and retrograde nutations and then converting back into ellip-
tical nutations. This “transfer function” is based on the solution of the linearized
dynamical equation of the wobble-nutation problem and makes use of estimated
values of seven of the parameters appearing in the theory (called “Basic Earth Pa-
rameters” (BEP)), obtained from a least-squares fit of the theory to an up-to-date
precession-nutation VLBI data set (Herring et al., 2002). The estimation of the
dynamical ellipticity of the Earth resulting in a value differing slightly from that
of the reference rigid Earth series (i.e. by the multiplying factor 1.000012249) was
a part of the estimation of the parameters needed for the non-rigid Earth series.
The MHB2000 model improves the IAU 1980 theory of nutation by taking into
account the effect of mantle anelasticity, ocean tides, electromagnetic couplings
produced between the fluid outer core and the mantle as well as between the solid
inner core and fluid outer core (Buffett et al., 2002) and the consideration of non-
linear terms which have hitherto been ignored in this type of formulation. The
axis of reference is the axis of maximum moment of inertia of the Earth in steady
rotation (i.e. ignoring time-dependent deformations).
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The resulting nutation series includes 678 lunisolar terms and 687 planetary terms
which are expressed as “in-phase” and “out-of-phase” components with their time
variations (see expression(5.35)). That model is expected to have an accuracy of
about 10µas for most of its terms. On the other hand, the FCN, being a free
motion which cannot be predicted rigorously (see Section 5.5.5), is not considered a
part of the IAU 2000A model, which limits the accuracy in the computed direction
of the celestial pole in the GCRS to about 0.3 mas.

The IAU 2000A nutation series is associated with the following offset (originally
provided as frame bias in dψbias and dεbias) of the direction of the CIP at J2000.0
from the direction of the pole of the GCRS:

ξ0 = (−0.0166170± 0.0000100)′′,

η0 = (−0.0068192± 0.0000100)′′.
(5.33)

The IAU 2000A nutation includes the geodesic nutation contributions to the an-
nual, semiannual and 18.6-year terms to be consistent with including the geodesic
precession (pg = 1.92′′/century) in the precession model and so that the BCRS
and GCRS are without any time-dependent rotation. The theoretical geodesic
nutation contribution (Fukushima, 1991) used in the MHB2000 model (Mathews
et al., 2002) is, in µas, for the nutations in longitude ∆ψg and obliquity ∆εg

∆ψg = −153 sin l′ − 2 sin 2l′ + 3 sin Ω,

∆εg = 1 cos Ω,
(5.34)

where l′ is the mean anomaly of the Sun and Ω the longitude of the ascending
node of the Moon.

The IAU 2000 nutation model is given by a series for nutation in longitude ∆ψ and
obliquity ∆ε, referred to the ecliptic of date, with t measured in Julian centuries
from epoch J2000.0:

∆ψ =
∑N
i=1(Ai +A′it) sin(ARGUMENT) + (A′′i +A′′′i t) cos(ARGUMENT),

∆ε =
∑N
i=1(Bi +B′it) cos(ARGUMENT) + (B′′i +B′′′i t) sin(ARGUMENT).

(5.35)

More details about the coefficients and arguments of these series will be given in
Section 5.7.

The original IAU 2000A nutation series are available electronically on the IERS
Conventions Center website at <5> in the files tab5.3a.txt and tab5.3b.txt

for the lunisolar and planetary components, respectively. The “total nutation”
includes all components.

The series corresponding to nutation “IAU 2000AR06” (see Section 5.6.3 for the
definition of the subscript “R06”) are available electronically at <2>. They are
provided by the files tab5.3a.txt (Table 5.3a) and tab5.3b.txt (Table 5.3b),
for nutation in longitude ∆ψ and obliquity ∆ε, respectively. An extract from
Tables 5.3a and 5.3b for the largest nutation components is given below. (Note
that the headings of those files as well as the caption below have changed with
respect to the IERS Conventions (2003) available at <5>.)

As recommended by IAU 2000 Resolution B1.6, an abridged model, designated
IAU 2000B, is available for those who need a model only at the 1 mas level. Such
a model has been developed by McCarthy and Luzum (2003). It includes fewer
than 80 lunisolar terms plus a bias to account for the effect of the planetary terms
in the time period under consideration. It provides the celestial pole motion with
an accuracy that does not result in a difference greater than 1 mas with respect
to that of the IAU 2000A model during the period 1995–2050. The model is
implemented in the Fortran subroutine IAU2000B.f, available electronically on
the IERS Conventions Center website at <5>.

5ftp://tai.bipm.org/iers/conv2010/chapter5/
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Table 5.3a: Extract from Table 5.3a (nutation in longitude) (available at < 2>) providing the largest
components for the “in-phase” and “out-of-phase” terms of the “IAU 2000AR06” nutation.
Units are µas and µas/century for the coefficients and their time variations, respectively.
The expressions for the Delaunay arguments appearing in columns 1 to 5 are given by
Eq. (5.43); those for the additional fundamental arguments of the planetary nutations
appearing in columns 6 to 14 (bottom part) are given by Eq. (5.44). (Because the largest
terms are all luni-solar, columns 9-17 contain only zeros in the extract shown.)

i Ai A′′i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 −17206424.18 3338.60 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −1317091.22 −1369.60 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 −227641.81 279.60 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 207455.50 −69.80 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 147587.77 1181.70 0 1 0 0 0 0 0 0 0 0 0 0 0 0

.....
i A′i A′′′i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1321 − 17418.82 2.89 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1322 −363.71 -1.50 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1323 −163.84 1.20 0 0 2 −2 2 0 0 0 0 0 0 0 0 0

.....

Table 5.3b: Extract from Table 5.3b (nutation in obliquity) (available at < 2>) providing the largest
components for the “in-phase” and “out-of-phase” terms of the “IAU 2000AR06” nutation.
Units are µas and µas/century for the coefficients and their time variations, respectively.
The expressions for the Delaunay arguments appearing in columns 1 to 5 are given by
Eq. (5.43); those for the additional fundamental arguments of the planetary nutations
appearing in columns 6 to 14 (bottom part) are given by Eq. (5.44). (Because the largest
terms are all luni-solar, columns 9-17 contain only zeros in the extract shown.)

i Bi B′i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1 1537.70 9205233.10 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 −458.70 573033.60 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
3 137.40 97846.10 0 0 2 0 2 0 0 0 0 0 0 0 0 0
4 −29.10 −89749.20 0 0 0 0 2 0 0 0 0 0 0 0 0 0
5 −17.40 22438.60 0 1 2 −2 2 0 0 0 0 0 0 0 0 0

.....
i B′i B′′′i l l′ F D Ω LMe LV e LE LMa LJ LSa LU LNe pA

1038 0.20 883.03 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1039 −0.30 −303.09 0 0 2 −2 2 0 0 0 0 0 0 0 0 0
1040 0.00 −67.76 0 1 2 −2 2 0 0 0 0 0 0 0 0 0

.....

5.6.2 Description of the IAU 2006 precession

The IAU 2006 precession (Capitaine et al., 2003c) provides improved polynomial
expressions up to the 5th degree in time t, both for the precession of the ecliptic
and the precession of the equator, the latter being consistent with dynamical
theory while matching the IAU 2000A precession rate for continuity reasons.

While the precession part of the IAU 2000A model consists only of corrections
(δψA = (−0.29965 ± 0.00040)′′/century, δωA = (−0.02524 ± 0.00010)′′/century)
to the precession rates of the IAU 1976 precession, the IAU 2006 precession of the
equator was derived from the dynamical equations expressing the motion of the
mean pole about the ecliptic pole, with ε0 = 84381.406′′ for the mean obliquity at
J2000.0 of the ecliptic (while the IAU 2000 value was 84381.448′′). The IAU 2006
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value for the Earth’s dynamical flattening is quite consistent with the IAU 2000
value; the IAU 2006 precession includes the Earth’s J2 rate effect (i.e. J̇2 =
−3×10−9/century), mostly due to the post-glacial rebound, which was not taken
into account in IAU 2000. The other contributions to the IAU 2006 precession
rates are from Williams (1994) and MHB2000, and the geodesic precession is from
Brumberg (1991). These also include corrections for the perturbing effects in the
observed quantities.

5.6.3 IAU 2006 adjustments to the IAU 2000A nutation

The difference between IAU 2006 and IAU 2000 lies essentially in the precession
part, though very small changes are needed in a few of the IAU 2000A nutation
amplitudes in order to ensure compatibility with the IAU 2006 values for ε0 and
the J2 rate.

• Introducing the IAU 2006 J2 rate value gives rise to additional Poisson terms
in nutation, the coefficients of which are proportional to J̇2/J2 (i.e.−2.7774×
10−6/century). The largest changes (cf. (5.19) for the corresponding changes
in the X,Y series) in µas are (Capitaine and Wallace, 2006):

dψJ2d = + 47.8 t sin Ω + 3.7 t sin 2(F −D + Ω) + 0.6 t sin 2(F + Ω)− 0.6 t sin 2Ω,

dεJ2d = −25.6 t cos Ω− 1.6 t cos 2(F −D + Ω).

(5.36)

• The effect of the adjustment to the IAU 2006 value for ε0 results from the
fact that the IAU 2006 obliquity is different from the IAU 1980 obliquity
that was used when estimating the IAU 2000A nutation amplitudes. To
compensate for this change, it is necessary to multiply the amplitudes of the
nutation in longitude by sin εIAU2000/ sin εIAU2006 = 1.000000470. (No such
adjustment is needed in the case of X,Y .)

The largest terms in the correction applied to the IAU 2000A nutation in
longitude for this effect are, in µas:

dεψ = −8.1 sin Ω− 0.6 sin 2(F −D + Ω). (5.37)

Whenever these small adjustments are included, the notation “IAU 2000AR06”
can be used to indicate that the nutation has been revised for use with the IAU
2006 precession. The adjustments are taken into account in the SOFA implemen-
tation of the IAU 2006/2000A precession-nutation (Section 5.9). The difference
between the IAU 2000AR06 and IAU 2000 expressions for the nutation in longitude
and obliquity is available electronically on the IERS Conventions Center website
(Table 5.2f) at < 2> in file tab5.2f.txt.

5.6.4 Precession developments compatible with the IAU 2000/2006 model

The IAU 2006 precession polynomial developments (Capitaine et al., 2003c) pro-
vide separately the developments for the basic quantities for the ecliptic and the
equator that are direct solutions of the dynamical equations, and derived quan-
tities, such as those for the GCRS coordinates of the CIP, X,Y , which were
given by (5.16), or for sidereal time (see Section 5.5.7). The latter can be ob-
tained from the expression for the Earth Rotation Angle, which is independent of
the precession-nutation model, and the expression for the equation of the origins
(i.e. the distance between the CIO and the equinox along the CIP equator), which
is directly model-dependent.

The basic expressions for the precession of the ecliptic and the equator are pro-
vided by (5.38) and (5.39), respectively, with ε0 = 84381.406′′:

PA = +4.199094′′ t+ 0.1939873′′ t2 − 0.00022466′′ t3 − 0.000000912′′ t4 + 0.0000000120′′ t5

QA = −46.811015′′ t+ 0.0510283′′ t2 + 0.00052413′′ t3 − 0.000000646′′ t4 − 0.0000000172′′ t5
(5.38)
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ψA = 5038.481507′′ t− 1.0790069′′ t2 − 0.00114045 t3 + 0.000132851′′ t4 − 0.0000000951′′ t5

ωA = ε0 − 0.025754′′ t+ 0.0512623′′ t2 − 0.00772503′′ t3 − 0.000000467′′ t4 + 0.0000003337′′ t5
(5.39)

The precession quantities PA = sinπA sin ΠA and QA = sinπA cos ΠA are the
secular parts of the developments of the quantities P = sinπ sin Π and Q =
sinπ cos Π, π and Π being the osculating elements (i.e. the inclination and lon-
gitude of the ascending node, respectively) of the Earth-Moon barycenter orbit
referred to the fixed ecliptic for J2000.0. The precession quantities ψA and ωA,
defined in Section 5.4.5, are solutions of the dynamical equations expressing the
motion of the mean pole about the ecliptic pole.

Derived expressions for other precession quantities are given below:

χA = 10.556403′′ t− 2.3814292′′ t2 − 0.00121197′′ t3

+0.000170663′′ t4 − 0.0000000560′′ t5,

εA = ε0 − 46.836769′′ t− 0.0001831′′ t2 + 0.00200340′′ t3

−0.000000576′′ t4 − 0.0000000434′′ t5,

γ̄ = −0.052928′′ + 10.556378′′ t+ 0.4932044′′ t2 − 0.00031238′′ t3

−0.000002788′′ t4 + 0.0000000260′′ t5,

φ̄ = +84381.412819′′ − 46.811016′′ t+ 0.0511268′′ t2 + 0.00053289′′ t3

−0.000000440′′ t4 − 0.0000000176′′ t5,

ψ̄ = −0.041775′′ + 5038.481484′′ t+ 1.5584175′′ t2 − 0.00018522′′ t3

−0.000026452′′ t4 − 0.0000000148′′ t5,

(5.40)

where χA is the precession of the ecliptic along the equator and εA is the mean
obliquity of date; γ̄, φ̄ and ψ̄ are the angles (Williams 1994, Fukushima 2003)
referred to the GCRS. γ̄ is the GCRS right ascension of the intersection of the
ecliptic of date with the GCRS equator, φ̄ is the obliquity of the ecliptic of date
on the GCRS equator and ψ̄ is the precession angle plus bias in longitude along
the ecliptic of date. The last three series are from Table 1 of Hilton et al. (2006).

Due to their theoretical bases, the original development of the precession quanti-
ties as functions of time can be considered as being expressed in TDB. However,
in practice, TT is used in the above expressions in place of TDB. The largest term
in the difference TDB−TT being 1.7 ms × sin l′ (where l′ is the mean anomaly
of the Sun), the resulting error in the precession quantity ψA is periodic, with an
annual period and an amplitude of 2.7′′ × 10−9, which is significantly below the
required microarcsecond accuracy. This applies to Eq. (5.38)-(5.40), as well as to
the polynomial part of Eq. (5.16) (i.e. the expression for the CIP’s GCRS X, Y
coordinates).

5.6.5 Summary of the different ways of implementing the IAU 2006/2000A precession-
nutation

There are several ways to implement the precession-nutation model, and the pre-
cession developments to be used should be consistent with the procedure being
used.

Using the CIO based paradigm, the complete procedure to transform between the
ITRS and the GCRS compatible with the IAU 2006/2000A precession-nutation is
based on the IAU 2000 expression (i.e. Eq. (5.15)) for the ERA and on expressions
provided by (5.16) and Tables 5.2a–5.2d for the positions of the CIP and the CIO
in the GCRS. These already contain the proper expressions for the new precession-
nutation model and the frame biases.
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Implementing the IAU 2006/2000A/B model using the equinox based transfor-
mation between the ITRS and the GCRS requires following one of the rigor-
ous procedures mentioned in Section 5.4.5 that are supported by SOFA routines
(Section 5.9). They are based upon the IAU 2000 bias, IAU 2006 precession
(cf. Eq. (5.39)) and the (adjusted) IAU 2000A nutation. These transformations
should be used in conjunction with the IAU 2006 expression for Greenwich Sidereal
Time (cf. Eq. (5.31) and Table 5.2e).

5.7 The fundamental arguments of nutation theory

5.7.1 The multipliers of the fundamental arguments of nutation theory

Each of the lunisolar terms in the nutation series is characterized by a set of five
integers Nj which determines the argument for the term as a linear combination of
the five Fundamental Arguments Fj , namely the Delaunay variables (l, l′, F,D,Ω):
ARGUMENT =

∑5
j=1 NjFj , where the values (N1, · · · , N5) of the multipliers

characterize the term. The Fj are functions of time, and the angular frequency of
the nutation described by the term is given by

ω ≡ d(ARGUMENT)/dt. (5.41)

The frequency thus defined is positive for most terms, and negative for some.
Planetary nutation terms differ from the luni-solar nutation terms only in the fact
that ARGUMENT =

∑14
j=1 N

′
jF
′
j , F6 to F13, as noted in Tables 5.2a-5.2b and 5.3b,

are the mean longitudes of the planets including the Earth (LMe, LV e, LE , LMa,
LJ , LSa, LU , lNe) and F14 is the general precession in longitude pA.

Over time scales involved in nutation studies, the frequency ω is effectively time-
independent, and one may write, for the kth term in the nutation series,

ARGUMENT = ωkt+ βk. (5.42)

Tables of IAU 2000 nutation provide, for each (ARGUMENT), the coefficients of
the “in phase” and “out-of-phase” components in longitude ∆ψ and obliquity ∆ε,
plus their time variations in the case of the luni-solar nutations.

Different tables of nutations in longitude and obliquity do not necessarily as-
sign the same set of multipliers Nj to a particular term in the nutation se-
ries. The differences in the assignments arise from the fact that the replacement
(Nj=1,14) → −(Nj=1,14) accompanied by reversal of the sign of the coefficient of
sin(ARGUMENT) in the series for ∆ψ and ∆ε leaves these series unchanged.

In the original expressions for the fundamental arguments F1-F14 of luni-solar
and planetary nutations as functions of time, t is measured in TDB. However, the
changes in the nutation amplitudes resulting from the contributions, ωk(TDB−TT),
of the difference TDB−TT (whose largest term is 1.7 ms × sin l′) to the nutation
arguments (ωkt+βk) are responsible for a difference in the CIP location that is less
than 0.01 µas, which is significantly below the required microarcsecond accuracy.
Consequently, TT can be used in practice in place of TDB in the expressions for
the fundamental nutation arguments, as it is the case for the precession expres-
sions (cf. Section 5.6.4). This also applies to the non-polynomial part of Eq. (5.16)
for the GCRS CIP coordinates.

5.7.2 Development of the arguments of lunisolar nutation

The expressions for the fundamental arguments of nutation are given by the fol-
lowing developments where t is measured in Julian centuries of TDB (Simon et al.,
1994: Tables 3.4 (b.3) and 3.5 (b)) based on IERS 1992 constants and Williams
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et al. (1991), for precession.

F1 ≡ l = Mean Anomaly of the Moon

= 134.96340251◦ + 1717915923.2178′′t+ 31.8792′′t2

+0.051635′′t3 − 0.00024470′′t4,

F2 ≡ l′ = Mean Anomaly of the Sun

= 357.52910918◦ + 129596581.0481′′t− 0.5532′′t2

+0.000136′′t3 − 0.00001149′′t4,

F3 ≡ F = L− Ω

= 93.27209062◦ + 1739527262.8478′′t− 12.7512′′t2

−0.001037′′t3 + 0.00000417′′t4,

F4 ≡ D = Mean Elongation of the Moon from the Sun

= 297.85019547◦ + 1602961601.2090′′t− 6.3706′′t2

+0.006593′′t3 − 0.00003169′′t4,

F5 ≡ Ω = Mean Longitude of the Ascending Node of the Moon

= 125.04455501◦ − 6962890.5431′′t+ 7.4722′′t2

+0.007702′′t3 − 0.00005939′′t4

(5.43)

where L is the Mean Longitude of the Moon.

Note that the SOFA implementation of the IAU 2000A nutation takes the MHB2000
code (T. Herring 2002) as its definition of the IAU 2000A model. As part of this
strict compliance, SOFA uses the original MHB2000 expressions for the Delaunay
variables l′ and D, that differ from Eq. (5.43) in that the fixed term is rounded
to five digits (i.e. 1287104.79305′′ instead of 1287104.793048′′ for the Eq. (5.43)
value in the l expression converted into arcseconds and 1072260.70369′′ instead of
1072260.703692′′ for the Eq. (5.43) value in the l expression converted into arc-
seconds), respectively. The CIP location is insensitive to this difference of 2 µas
in the nutation arguments at a level better than 10−9 arcsec accuracy.

It should also be noted that the SOFA equinox based implementation of the
IAU 2000A nutation follows the MHB2000 Fortran code in neglecting time varia-
tions of the out of phase components, i.e. the A′′′i and B′′′i columns of Table 5.3a
(see Section 5.6.1). The difference in the CIP location is just over 2 µas after one
century.

5.7.3 Development of the arguments for the planetary nutation

The mean longitudes of the planets used in the arguments for the planetary nu-
tations are essentially those provided by Souchay et al. (1999), based on theories
and constants of VSOP82 (Bretagnon, 1982) and ELP 2000 (Chapront-Touzé and
Chapront, 1983) and developments of Simon et al. (1994: Tables 5.8.1-5.8.8).
Their developments are given in Eq. (5.44) in radians with t in Julian centuries.
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The general precession, F14, is from Kinoshita and Souchay (1990).

F6 ≡ LMe = 4.402608842 + 2608.7903141574× t,

F7 ≡ LV e = 3.176146697 + 1021.3285546211× t,

F8 ≡ LE = 1.753470314 + 628.3075849991× t,

F9 ≡ LMa = 6.203480913 + 334.0612426700× t,

F10 ≡ LJ = 0.599546497 + 52.9690962641× t,

F11 ≡ LSa = 0.874016757 + 21.3299104960× t,

F12 ≡ LU = 5.481293872 + 7.4781598567× t,

F13 ≡ LNe = 5.311886287 + 3.8133035638× t,

F14 ≡ pA = 0.02438175× t+ 0.00000538691× t2.

(5.44)

Another part of the strict compliance of SOFA with the MHB2000 code is that
simplified expressions are used for the Delaunay variables F1-F5 in the plane-
tary nutation case. The maximum difference this makes to the CIP location
is 0.013 µas after one century. The SOFA implementation also uses the orig-
inal MHB2000 expression for the longitude of Neptune (slightly different from
that in Eq. (5.44), i.e. LNe = 5.321159000 + 3.812777400 × t instead of
LNe = 5.311886287 + 3.8133035638 × t). The maximum difference in the
CIP is less than 0.01 µas after one century.

5.8 Prograde and retrograde nutation amplitudes

The quantities ∆ψ(t) sin ε0 and ∆ε(t) may be viewed as the components of a
moving two-dimensional vector in the mean equatorial system, with the positive
X and Y axes pointing along the directions of increasing ∆ψ and ∆ε, respectively.
The purely periodic parts of ∆ψ(t) sin ε0 and ∆ε(t) for a term of frequency ωk are
made up of in-phase and out-of-phase parts

(∆ψip(t) sin ε0, ∆εip(t)) = (∆ψipk sin ε0 sin(ωkt+ βk), ∆εipk cos(ωkt+ βk)),

(∆ψop(t) sin ε0, ∆εop(t)) = (∆ψopk sin ε0 cos(ωkt+ βk), ∆εopk sin(ωkt+ βk)),

(5.45)

respectively. Each of these vectors may be decomposed into two uniformly rotating
vectors, one constituting a prograde circular nutation (rotating in the same sense
as from the positive X axis towards the positive Y axis) and the other a retrograde
one rotating in the opposite sense. The decomposition is facilitated by factoring
out the sign qk of ωk from the argument, qk being such that

qkωk ≡ |ωk| (5.46)

and writing

ωkt+ βk = qk(|ωk|t+ qkβk) ≡ qkχk, (5.47)

with χk increasing linearly with time. The pair of vectors above then becomes

(∆ψip(t) sin ε0, ∆εip(t)) = (qk∆ψipk sin ε0 sinχk, ∆εipk cosχk),

(∆ψop(t) sin ε0, ∆εop(t)) = (∆ψopk sin ε0 cosχk, qk∆εopk sinχk).

(5.48)

Because χk increases linearly with time, the mutually orthogonal unit vectors
(sinχk,− cosχk) and (cosχk, sinχk) rotate in a prograde sense and the vectors
obtained from these by the replacement χk → −χk, namely (− sinχk,− cosχk)
and (cosχk,− sinχk) are in retrograde rotation. On resolving the in-phase and
out-of-phase vectors in terms of these, one obtains
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(∆ψip(t) sin ε0, ∆εip(t)) = Apro ipk (sinχk, − cosχk) +Aret ipk (− sinχk, − cosχk),

(∆ψop(t) sin ε0, ∆εop(t)) = Apro opk (cosχk, sinχk) +Aret opk (cosχk, − sinχk),

(5.49)

where

Apro ipk = 1
2

(qk∆ψipk sin ε0 −∆εipk ),

Aret ipk = − 1
2

(qk∆ψipk sin ε0 + ∆εipk ),

Apro opk = 1
2

(∆ψopk sin ε0 + qk∆εopk ),

Aret opk = 1
2

(∆ψopk sin ε0 − qk∆εopk ).

(5.50)

The expressions providing the corresponding nutation in longitude and in obliquity
from circular terms are

∆ψipk = qk
sin ε0

(
Apro ipk −Aret ipk

)
,

∆ψopk = 1
sin ε0

(
Apro opk +Aret opk

)
,

∆εipk = −
(
Apro ipk +Aret ipk

)
,

∆εopk = qk
(
Apro opk −Aret opk

)
.

(5.51)

The contribution of the k-term of the nutation to the position of the Celestial In-
termediate Pole (CIP) in the mean equatorial system is thus given by the complex
coordinate

∆ψ(t) sin ε0 + i∆ε(t) = −i
(
Aprok eiχk +Aretk e−iχk

)
, (5.52)

where Aprok and Aretk are the amplitudes of the prograde and retrograde compo-
nents, respectively, and are given by

Aprok = Apro ipk + iApro opk , Aretk = Aret ipk + iAret opk . (5.53)

The decomposition into prograde and retrograde components is important for
studying the role of resonance in nutation because any resonance (especially in
the case of the nonrigid Earth) affects Aprok and Aretk unequally.

In the literature (Wahr, 1981) one finds an alternative notation, frequently fol-
lowed in analytic formulations of nutation theory, that is:

∆ε(t) + i∆ψ(t) sin ε0 = −i
(
Apro −k e−iχk +Aret −k eiχk

)
, (5.54)

with

Apro −k = Apro ipk − iApro opk , Aret −k = Aret ipk − iAret opk . (5.55)

Further details can be found in Defraigne et al. (1995) and Bizouard et al. (1998).

5.9 Algorithms for transformations between ITRS and GCRS

Software routines to implement the IAU 2006/2000A transformations are provided
by the IAU Standards Of Fundamental Astronomy service.6 The routines vary
in complexity from simple modules to complete transformations, allowing the
application developer to trade off simplicity of use against computational efficiency
and flexibility. Implementations in Fortran77 and C are available.

The SOFA software supports two equivalent ways of implementing the IAU reso-
lutions in the transformation from ITRS to GCRS provided by expression (5.1),

6The SOFA software collection may be found at the website http://iau-sofa.hmnao.com/.
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namely (a) the transformation based on the Celestial Intermediate Origin and the
Earth Rotation Angle (i.e. the CIO based procedure described in Sections 5.4.1,
5.4.2 and 5.4.4, using parameters described in Section 5.5) and (b) the classi-
cal transformation based on the equinox and Greenwich Sidereal Time (i.e. the
equinox based procedure described in Sections 5.4.1, 5.4.3 and 5.4.5, with the
use of classical precession and nutation angles). The quantity that links the two
systems is the “equation of the origins”, αCIO − αΥ (difference between right as-
censions, αCIO and αΥ, referred to the CIO and the equinox, respectively), or
equivalently ERA−GST. For both transformations, the procedure is to form the
various components of expression (5.1), choosing for the Q(t) and R(t) pair either
the CIO based or classical forms, and then to combine these components into the
complete terrestrial-to-celestial matrix.

In all cases, the polar motion matrix, W (t) in expression (5.1), is needed, using the
polar coordinates xp,yp. This can be accomplished by calling the SOFA routine
POM00 and then transposing the result (e.g. using the support routine TR). Also
required is the quantity s′, modeled by the routine SP00.

SOFA routines that support the IAU 2006/2000A models include the following
(among others):

BP06 celestial-to-true matrix (etc.), given ∆ψ and ∆ε

C2I06A celestial-to-intermediate matrix, IAU 2006/2000A

C2IXYS celestial-to-intermediate matrix, given X, Y and s

C2T06A celestial-to-terrestrial matrix, IAU 2006/2000A

C2TCIO CIO based celestial-to-terrestrial matrix

EORS equation of the origins, given celestial-to-true matrix and s

ERA00 Earth Rotation Angle

GMST06 Greenwich Mean Sidereal Time, IAU 2006

GST06A Greenwich (apparent) Sidereal Time, IAU 2006/2000A

NUM06A nutation matrix, IAU 2006/2000A

NUT06A nutation components, IAU 2006/2000A

PNM06A celestial-to-true matrix, IAU 2006/2000A

POM00 polar motion matrix

SP00 the quantity s′

XY06 X,Y from semi-analytical series, IAU 2006/2000A

XYS06A X,Y ,s, IAU 2006/2000A

The matrix for the combined effects of nutation, precession and frame bias is Q(t)
in expression (5.1). For the CIO based transformation, this is the intermediate-
to-celestial matrix, it can be obtained (as the transpose) using the SOFA routine
C2IXYS, starting from the CIP position X,Y and the quantity s that defines the
position of the CIO. The IAU 2006/2000AX,Y, s are available by calling the SOFA
routine XYS06A. In the case of the equinox based transformation, the counterpart
to matrix Q(t) is the true-to-celestial matrix. To obtain this matrix requires the
nutation components ∆ψ and ∆ε; these can be predicted using the IAU 2000A
model, with adjustments to match IAU 2006 precession, by means of the SOFA
routine NUT06A. Faster, but less accurate, predictions are available from the NUT00B
routine, which implements the IAU 2000B truncated model. Once ∆ψ and ∆ε are
known, the true-to-celestial matrix can be obtained by calling the routine PN06

and taking the transpose with TR.

The intermediate component is the angle for Earth rotation that defines matrix
R(t) in expression (5.1). For the CIO based transformation, the angle in question
is the Earth Rotation Angle, ERA, which can be obtained by calling the SOFA
routine ERA00. The counterpart in the case of the equinox based transformation
is the Greenwich (apparent) Sidereal Time. This can be obtained by calling the
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SOFA routine GST06, given the celestial-to-true matrix that was obtained earlier.

The three components – the precession-nutation matrix, the Earth rotation quan-
tity and the polar motion matrix – are then assembled into the final terrestrial-
to-celestial matrix by means of the SOFA routine C2TCIO (CIO based) or C2TEQX

(equinox based), followed by TR as required.

Two methods to generate the terrestrial-to-celestial (i.e. ITRS-to-GCRS) matrix
Q(t)R(t)W (t), given TT and UT1, are set out below. In each case it is assumed
that observed small corrections to the IAU 2006/2000A model, either as ∆X,∆Y
or as d∆ψ, d∆ε, are available and need to be included.

Method (1): the CIO based transformation

The CIO based transformation is a function of the CIP coordinates X,Y and the
quantity s.

For the given TT, call the SOFA routine XY06 to obtain the IAU 2006/2000A
X,Y from series (see Section 5.5.4) and then the routine S06 to obtain s. Any
CIP corrections ∆X,∆Y can now be applied, and the corrected X,Y, s can be
used to call the routine C2IXYS, giving the GCRS-to-CIRS matrix. Next call the
routine ERA00 to obtain the ERA corresponding to the current UT1, and apply it
as an R3 rotation using the routine RZ, to form the CIRS-to-TIRS matrix. Given
xp, yp, and obtaining s′ by calling the routine SP00, the polar motion matrix
(i.e. TIRS-to-ITRS) is then produced by the routine POM00. The product of the
two matrices (GCRS-to-TIRS and TIRS-to-ITRS), obtained by calling the routine
RXR, is the GCRS-to-ITRS matrix, which can be inverted by calling the routine
TR to give the final result.

Method (2): the equinox based transformation

The classical transformation, based on angles and using sidereal time is also avail-
able.

Given TT, the IAU 2006/2000A nutation components ∆ψ,∆ε are obtained by
calling the SOFA routine NUT06A. Any corrections d∆ψ, d∆ε can now be applied.
Next, the GCRS-to-true matrix is obtained using the routine PN06 (which employs
the 4-rotation Fukushima-Williams method described in Section 5.3.4, final para-
graph). The classical GCRS-to-true matrix can also be generated by combining
separate frame bias, precession and nutation matrices. The SOFA routine BI00

can be called to obtain the frame bias components, the routine P06E to obtain
various precession angles, and the routine NUM06A to generate the nutation matrix.
The product N×P×B is formed by using the routine RXR. Next call the routine
GST06 to obtain the GST corresponding to the current UT1, and apply it as an
R3 rotation using the routine RZ to form the true matrix-to-TIRS. Given xp, yp,
and obtaining s′ with the routine SP00, the polar motion matrix (i.e. TIRS-to-
ITRS) is then obtained using the routine POM00. The product of the two matrices
(GCRS-to-TIRS and TIRS-to-ITRS), obtained by calling the routine RXR, is the
GCRS-to-ITRS matrix, which can be inverted by calling the routine TR to give
the final result.

Methods (1) and (2) agree to microarcsecond precision.

Both methods can be abridged to trade off speed and accuracy (see Capitaine
and Wallace, 2008). The abridged nutation model IAU 2000B (see Section 5.5.1)
can be substituted in Method (2) by calling NUT00B instead of NUT06A. Depending
on the application, the best compromise between speed and accuracy may be to
evaluate the full series to obtain sample values for interpolation.

5.10 Notes on the new procedure to transform from ICRS to ITRS

The transformation between the GCRS and the ITRS, which is provided in detail
in this chapter for use in the IERS Conventions, is also part of the more gen-
eral transformation for computing directions of celestial objects in intermediate
systems or terrestrial systems.

The procedure to be followed in transforming from the celestial (ICRS) to the
terrestrial (ITRS) systems has been clarified to be consistent with the improving
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observational accuracy. See Figure 5.1 in the IAU NFA Working Group docu-
ments (Capitaine et al., 2007) for a diagram of the CIO based and equinox based
procedures to be followed.

The purpose of this chart is to show the ICRS-to-BCRS-to-GCRS-to-ITRS trans-
formation in general relativity (IAU 2000 Resolution B1.3) and the parallel CIO
and equinox based processes (IAU 2000 Resolution B1.8).

As before, we make use of celestial and terrestrial intermediate reference systems
in transforming to a terrestrial reference system (See also Seidelmann and Ko-
valevsky (2002).)

The Celestial Intermediate Pole (CIP) that is realized by the IAU 2006/2000A
precession-nutation model defines its equator and the Conventional Intermediate
Origin replaces the equinox.

The position in this reference system is called the intermediate right ascension
and declination and is analogous to the previous designation of “apparent right
ascension and declination.”
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Figure 5.1: Process to transform from celestial to terrestrial reference systems (Chart from the
IAU Working Group on Nomenclature for Fundamental Astronomy (2006)). The chart summarizes
the system, and the elements that are associated with that system, i.e. the name for the positions (place),
the processes/corrections, the origin to which the coordinates are referred, and the time scale to use. In
particular the blue type in the box in the “Process” column is the operation/correction to be applied, and
the purple type indicates the quantities required for that process. CIO and equinox based processes are
indicated using grey and yellow shading, respectively.

73



N
o

.
3

6 IERS
Technical
Note

5 Transformation between the ITRS and the GCRS

References

Aoki, S., Guinot, B., Kaplan, G. H., Kinoshita, H., McCarthy, D. D., and Sei-
delmann, P. K., 1982, “The New Definition of Universal Time,” Astron.
Astrophys., 105(2), pp. 359–361.

Aoki, S. and Kinoshita, H., 1983, “Note on the relation between the equinox
and Guinot’s non-rotating origin,” Celest. Mech., 29(4), pp. 335–360,
doi:10.1007/BF01228528.
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Gravitational models commonly used in current (2010) precision orbital analysis
represent a significant improvement with respect to geopotential model EGM96,
the past conventional model of the IERS Conventions (2003), thanks to the avail-
ability of CHAMP <1> and, most importantly, GRACE <2> data in the 2000s.

The IERS, recognizing the recent development of new gravitational models derived
from the optimal combination of GRACE data with high resolution gravitational
information obtained from surface gravimetry and satellite altimetry data, recom-
mends at this time the EGM2008 model as the conventional model.

The conventional model that is presented in Section 6.1 describes the static part
of the field and the underlying background model for the secular variations of
some of its coefficients. In addition, other time varying effects should be taken
into account: solid Earth tides (Section 6.2), ocean tides (Section 6.3), solid Earth
pole tide (Section 6.4), and ocean pole tide (Section 6.5).

The geopotential field V at the point (r, φ, λ) is expanded in spherical harmonics
up to degree N as

V (r, φ, λ) =
GM

r

N∑
n=0

(ae
r

)n n∑
m=0

[
C̄nmcos(mλ) + S̄nmsin(mλ)

]
P̄nm(sinφ) (6.1)

(with S̄n0 = 0), where C̄nm and S̄nm are the normalized geopotential coefficients
and P̄nm are the normalized associated Legendre functions. The normalized Leg-
endre function is related to the classical (unnormalized) one by

P̄nm = NnmPnm, (6.2a)

where

Nnm =

√
(n−m)!(2n+ 1)(2− δ0m)

(n+m)!
, δ0m =

{
1 if m = 0

0 if m 6= 0
(6.2b)

Correspondingly, the normalized geopotential coefficients (C̄nm, S̄nm) are related
to the unnormalized coefficients (Cnm, Snm) by

Cnm = NnmC̄nm, Snm = NnmS̄nm. (6.3)

The scaling parameters (GM , ae) associated with the model are described in
Section 6.1. Sections 6.2 to 6.5 provide variations to the normalized coefficients
(C̄nm, S̄nm) due to the physical effects described in each section.

6.1 Conventional model based on the EGM2008 model

The EGM2008 model (Pavlis et al., 2008) is complete to degree and order 2159,
and contains additional spherical harmonic coefficients up to degree 2190 and order
2159. The GM⊕ and ae values reported with EGM2008 (398600.4415 km3/s2

and 6378136.3 m) should be used as scaling parameters with its gravitational
potential coefficients. They are to be considered as TT-compatible values. The
recommended TCG-compatible value, GM⊕ = 398600.4418 km3/s2, should be
used with the two-body term when working with Geocentric Coordinate Time
(TCG) (398600.4415 or 398600.4356 should be used by those still working with
Terrestrial Time (TT) or Barycentric Dynamical Time (TDB), respectively). The
EGM2008 model (including error estimates) is available at <3>.

Although EGM2008 is complete to degree and order 2159, most users in space
geodesy will find their needs covered by a truncated version of the model. Sug-
gested truncation levels as a function of the orbit of interest are listed in Table 6.1
It is expected that these truncation levels provide a 3-dimensional orbit accuracy
of better than 0.5 mm for the indicated satellites (Ries, 2010).

1http://op.gfz-potsdam.de/champ/
2http://www.csr.utexas.edu/grace/
3http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/
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Table 6.1: Suggested truncation levels for use of EGM2008 at different orbits

Orbit radius / km Example Truncation level

7331 Starlette 90
12270 Lageos 20
26600 GPS 12

The EGM2008 model was based on the ITG-GRACE03S GRACE-only gravita-
tional model (<4>, see also Mayer-Gürr, 2007) which is available along with its
complete error covariance matrix to degree and order 180. Therefore the static
gravitational field was developed assuming models complying with the IERS Con-
ventions (2003) and complemented by the following:

• ocean tides: FES2004 (Lyard et al., 2006),

• ocean pole tide: Desai (2003, see Section 6.5),

• atmosphere and ocean de-aliasing: AOD1B RL04 (Flechtner, 2007).

For some of the low-degree coefficients, the conventional geopotential model uses
values which are different from the original EGM2008 values. The static field also
assumes values for the secular rates of low-degree coefficients. In order to use the
static field properly and project it in time, the secular rates should be accounted
for. The instantaneous values of coefficients C̄n0 to be used when computing orbits
are given by:

C̄n0(t) = C̄n0(t0) + dC̄n0/dt× (t− t0) (6.4)

where t0 is the epoch J2000.0 and the values of C̄n0(t0) and dC̄n0/dt are given in
Table 6.2. Note that the zero-tide C20 coefficient in the conventional geopoten-
tial model is obtained from the analysis of 17 years of SLR data approximately
centered on year 2000 and has an uncertainty of 2 × 10−11 (Cheng et al., 2010).
It differs significantly from the EGM2008 value obtained from 4 years of GRACE
data, as it is expected that tide-like aliases will affect GRACE-based C20 val-
ues, depending on the averaging interval used. The tide-free value of C20 can be
obtained as described in Section 6.2.2.

Table 6.2: Low-degree coefficients of the conventional geopotential model

Coefficient Value at 2000.0 Reference Rate / yr−1 Reference

C̄20 (zero-tide) -0.48416948×10−3 Cheng et al., 2010 11.6× 10−12 Nerem et al., 1993
C̄30 0.9571612×10−6 EGM2008 4.9× 10−12 Cheng et al., 1997
C̄40 0.5399659×10−6 EGM2008 4.7× 10−12 Cheng et al., 1997

Values for the C21 and S21 coefficients are included in the conventional geopo-
tential model. The C21 and S21 coefficients describe the position of the Earth’s
figure axis. When averaged over many years, the figure axis should closely coin-
cide with the observed position of the rotation pole averaged over the same time
period. Any differences between the averaged positions of the mean figure and
the mean rotation pole would be due to long-period fluid motions in the atmo-
sphere, oceans, or Earth’s fluid core (Wahr, 1987; 1990). At present, there is no
independent evidence that such motions are important. The conventional values
for C21(t) and S21(t) are intended to give a mean figure axis that corresponds to
the mean pole position consistent with the terrestrial reference frame defined in
Chapter 4.

This choice for C21 and S21 is realized as follows. First, to use the gravitational
potential coefficients to solve for a satellite orbit, it is necessary to rotate from

4http://www.igg.uni-bonn.de/apmg/fileadmin/itg-grace03.html
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the Earth-fixed frame, where the coefficients are pertinent, to an inertial frame,
where the satellite motion is computed. This transformation between frames
should include polar motion. We assume the polar motion parameters used are
relative to the IERS Reference Pole. Then the values

C̄21(t) =
√

3x̄p(t)C̄20 − x̄p(t)C̄22 + ȳp(t)S̄22,

S̄21(t) = −
√

3ȳp(t)C̄20 − ȳp(t)C̄22 − x̄p(t)S̄22,
(6.5)

where x̄p(t) and ȳp(t) (in radians) represent the IERS conventional mean pole
(see Section 7.1.4), provide a mean figure axis which coincides with the mean pole
consistent with the TRF defined in Chapter 4. Any recent value of C̄20, C̄22 and
S̄22 is adequate for 10−14 accuracy in Equation (6.5), e.g. the values of the present
conventional model (−0.48416948×10−3, 2.4393836×10−6 and −1.4002737×10−6

respectively) can be used.

The models for the low degree terms are generally consistent with the past long-
term trends, but these are not strictly linear in reality. There may be decadal
variations that are not captured by the models. In addition, they may not be
consistent with more recent surface mass trends due to increased ice sheet melting
and other results of global climate change.

6.2 Effect of solid Earth tides

6.2.1 Conventional model for the solid Earth tides

The changes induced by the solid Earth tides in the free space potential are most
conveniently modeled as variations in the standard geopotential coefficients Cnm
and Snm (Eanes et al., 1983). The contributions ∆Cnm and ∆Snm from the tides
are expressible in terms of the Love number k. The effects of ellipticity and of the
Coriolis force due to Earth rotation on tidal deformations necessitate the use of
three k parameters, k

(0)
nm and k

(±)
nm (except for n = 2) to characterize the changes

produced in the free space potential by tides of spherical harmonic degree and
order (nm) (Wahr, 1981); only two parameters are needed for n = 2 because

k
(−)
2m = 0 due to mass conservation.

Anelasticity of the mantle causes k
(0)
nm and k

(±)
nm to acquire small imaginary parts

(reflecting a phase lag in the deformational response of the Earth to tidal forces),
and also gives rise to a variation with frequency which is particularly pronounced
within the long period band. Though modeling of anelasticity at the periods
relevant to tidal phenomena (8 hours to 18.6 years) is not yet definitive, it is
clear that the magnitudes of the contributions from anelasticity cannot be ignored
(see below). Recent evidence relating to the role of anelasticity in the accurate
modeling of nutation data (Mathews et al., 2002) lends support to the model
employed herein, at least up to diurnal tidal periods; and there is no compelling
reason at present to adopt a different model for the long period tides.

Solid Earth tides within the diurnal tidal band (for which (nm) = (21)) are not
wholly due to the direct action of the tide generating potential (TGP) on the solid
Earth; they include the deformations (and associated geopotential changes) arising
from other effects of the TGP, namely, ocean tides and wobbles of the mantle
and the core regions. Deformation due to wobbles arises from the incremental
centrifugal potentials caused by the wobbles; and ocean tides load the crust and
thus cause deformations. Anelasticity affects the Earth’s deformational response
to all these types of forcing.

The wobbles, in turn, are affected by changes in the Earth’s moment of inertia due
to deformations from all sources, and in particular, from the deformation due to
loading by the (nm) = (21) part of the ocean tide; wobbles are also affected by the
anelasticity contributions to all deformations, and by the coupling of the fluid core
to the mantle and the inner core through the action of magnetic fields at its bound-
aries (Mathews et al., 2002). Resonances in the wobbles—principally, the Nearly
Diurnal Free Wobble resonance associated with the FCN —and the consequent
resonances in the contribution to tidal deformation from the centrifugal pertur-
bations associated with the wobbles, cause the body tide and load Love/Shida

81



N
o

.
3

6 IERS
Technical
Note

6 Geopotential

number parameters of the diurnal tides to become strongly frequency dependent.
For the derivation of resonance formulae of the form (6.9) below to represent this
frequency dependence, see Mathews et al., (1995). The resonance expansions as-
sume that the Earth parameters entering the wobble equations are all frequency
independent. However the ocean tide induced deformation makes a frequency
dependent contribution to deformability parameters which are among the Earth
parameters just referred to. It becomes necessary therefore to add small correc-
tions to the Love number parameters computed using the resonance formulae.
These corrections are included in the tables of Love number parameters given in
this chapter and the next.

The deformation due to ocean loading is itself computed in the first place using
frequency independent load Love numbers (see Section 7.1.2). Corrections to take
account of the resonances in the load Love numbers are incorporated through
equivalent corrections to the body tide Love numbers, following Wahr and Sasao
(1981), as explained further below. These corrections are also included in the
tables of Love numbers.

The degree 2 tides produce time dependent changes in C2m and S2m, through
k

(0)
2m, which can exceed 10−8 in magnitude. They also produce changes exceeding

3× 10−12 in C4m and S4m through k
(+)
2m . (The direct contributions of the degree

4 tidal potential to these coefficients are negligible.) The only other changes
exceeding this cutoff are in C3m and S3m, produced by the degree 3 part of the
TGP.

The computation of the tidal contributions to the geopotential coefficients is
most efficiently done by a three-step procedure. In Step 1, the (2m) part of
the tidal potential is evaluated in the time domain for each m using lunar and
solar ephemerides, and the corresponding changes ∆C2m and ∆S2m are computed
using frequency independent nominal values k2m for the respective k

(0)
2m. The con-

tributions of the degree 3 tides to C3m and S3m through k
(0)
3m and also those of

the degree 2 tides to C4m and S4m through k
(+)
2m may be computed by a similar

procedure; they are at the level of 10−11.

Step 2 corrects for the deviations of the k
(0)
21 of several of the constituent tides of

the diurnal band from the constant nominal value k21 assumed for this band in
the first step. Similar corrections need to be applied to a few of the constituents
of the other two bands also.

Steps 1 and 2 can be used to compute the total tidal contribution, including the
time independent (permanent) contribution to the geopotential coefficient C̄20,
which is adequate for a “conventional tide free” model such as EGM96. When
using a “zero tide” model, this permanent part should not be counted twice, this
is the goal of Step 3 of the computation. See Section 6.2.2.

With frequency-independent values knm (Step 1), changes induced by the (nm)
part of the TGP in the normalized geopotential coefficients having the same (nm)
are given in the time domain by

∆C̄nm − i∆S̄nm =
knm

2n+ 1

3∑
j=2

GMj

GM⊕

(Re
rj

)n+1

P̄nm(sin Φj)e
−imλj (6.6)

where

knm = nominal Love number for degree n and order m,

Re = equatorial radius of the Earth,

GM⊕ = gravitational parameter for the Earth,

GMj = gravitational parameter for the Moon (j = 2)and Sun (j = 3),

rj = distance from geocenter to Moon or Sun,

Φj = body-fixed geocentric latitude of Moon or Sun,

λj = body-fixed east longitude (from Greenwich) of Moon or Sun.
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Equation (6.6) yields ∆C̄nm and ∆S̄nm for both n = 2 and n = 3 for all m,
apart from the corrections for frequency dependence to be evaluated in Step 2.
(The particular case (nm) = (20) needs special consideration, however, as already
indicated.)

One further computation to be done in Step 1 is that of the changes in the degree
4 coefficients produced by the degree 2 tides. They are given by

∆C̄4m − i∆S̄4m =
k
(+)
2m
5

∑3
j=2

GMj

GM⊕

(
Re
rj

)3

P̄2m(sin Φj)e
−imλj , (m = 0, 1, 2), (6.7)

which has the same form as Equation (6.6) for n = 2 except for the replacement

of k2m by k
(+)
2m .

The parameter values for the computations of Step 1 are given in Table 6.3. The
choice of these nominal values has been made so as to minimize the number of
terms for which corrections will have to be applied in Step 2. The nominal value
for m = 0 has to be chosen real because there is no closed expression for the
contribution to C̄20 from the imaginary part of k

(0)
20 .

Table 6.3: Nominal values of solid Earth tide external potential Love numbers.

Elastic Earth Anelastic Earth

n m knm k
(+)
nm Re knm Im knm k

(+)
nm

2 0 0.29525 −0.00087 0.30190 −0.00000 −0.00089
2 1 0.29470 −0.00079 0.29830 −0.00144 −0.00080
2 2 0.29801 −0.00057 0.30102 −0.00130 −0.00057
3 0 0.093 · · ·
3 1 0.093 · · ·
3 2 0.093 · · ·
3 3 0.094 · · ·

The frequency dependent corrections to the ∆C̄nm and ∆S̄nm values obtained
from Step 1 are computed in Step 2 as the sum of contributions from a number of
tidal constituents belonging to the respective bands. The contribution to ∆C̄20

from the long period tidal constituents of various frequencies f is

Re
∑
f(2,0)(A0δkfHf ) eiθf =

∑
f(2,0)[(A0Hfδk

R
f ) cos θf − (A0Hfδk

I
f ) sin θf ], (6.8a)

while the contribution to (∆C̄21 − i∆S̄21) from the diurnal tidal constituents and
to ∆C̄22 − i∆S̄22 from the semidiurnals are given by

∆C̄2m − i∆S̄2m = ηm
∑
f(2,m)

(AmδkfHf ) eiθf , (m = 1, 2), (6.8b)

where

A0 =
1

Re
√

4π
= 4.4228× 10−8 m−1, (6.8c)

Am =
(−1)m

Re
√

8π
= (−1)m(3.1274× 10−8) m−1, (m 6= 0), (6.8d)

η1 = −i, η2 = 1, (6.8e)
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δkf = difference between kf defined as k
(0)
2m at frequency f and

the nominal value k2m, in the sense kf − k2m, plus a
contribution from ocean loading,

δkRf = real part of δkf , and

δkIf = imaginary part of δkf , i.e., δkf = δkRf + iδkIf ,

Hf = amplitude (in meters) of the term at frequency f from
the harmonic expansion of the tide generating potential,
defined according to the convention of Cartwright and
Tayler (1971), and

θf = n̄ · β̄ =
∑6
i=1 niβi, or

θf = m(θg + π)− N̄ · F̄ = m(θg + π)−
∑5
j=1 NjFj ,

where

β̄ = six-vector of Doodson’s fundamental arguments βi,
(τ, s, h, p,N ′, ps),

n̄ = six-vector of multipliers ni (for the term at frequency f)
of the fundamental arguments,

F̄ = five-vector of fundamental arguments Fj
(the Delaunay variables l, l′, F,D,Ω) of nutation theory,

N̄ = five-vector of multipliers Nj of the Delaunay variables for
the nutation of frequency −f + dθg/dt,

and θg is the Greenwich Mean Sidereal Time expressed in angle
units (i.e. 24 h = 360◦; see Chapter 5).

(π in (θg + π) is now to be replaced by 180◦.)

For the fundamental arguments (l, l′, F,D,Ω) of nutation theory and the conven-
tion followed here in choosing their multipliers Nj , see Chapter 5. For conversion
of tidal amplitudes defined according to different conventions to the amplitude
Hf corresponding to the Cartwright-Tayler convention, use Table 6.8 given at the
end of this chapter.

For diurnal tides, the frequency dependent values of any load or body tide Love
number parameter L (such as k

(0)
21 or k

(+)
21 in the present context) may be repre-

sented as a function of the tidal excitation frequency σ by a resonance formula

L(σ) = L0 +

3∑
α=1

Lα
(σ − σα)

, (6.9)

except for the small corrections referred to earlier. (They are to take account of
frequency dependent contributions to a few of the Earth’s deformability parame-
ters, which make (6.9) inexact.) The σα, (α = 1, 2, 3), are the respective resonance
frequencies associated with the Chandler wobble (CW), the retrograde FCN, and
the prograde free core nutation (also known as the free inner core nutation), and
the Lα are the corresponding resonance coefficients. All the parameters are com-
plex. The σα and σ are expressed in cycles per sidereal day (cpsd), with the
convention that positive (negative) frequencies represent retrograde (prograde)
waves. (This sign convention, followed in tidal theory, is the opposite of that em-
ployed in analytical theories of nutation.) In particular, given the tidal frequency
f in degrees per hour, one has

σ = f/(15× 1.002737909),

the factor 1.002737909 being the number of sidereal days per solar day. The
values used herein for the σα are from Mathews et al. (2002), adapted to the sign
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convention used here:

σ1 = − 0.0026010 − 0.0001361 i

σ2 = 1.0023181 + 0.000025 i

σ3 = 0.999026 + 0.000780 i.

(6.10)

They were estimated from a fit of nutation theory to precession rate and nutation
amplitude estimates found from an analyis of very long baseline interferometry
(VLBI) data.

Table 6.4 lists the values of L0 and Lα in resonance formulae of the form (6.9)

for k
(0)
21 and k

(+)
21 . They were obtained by evaluating the relevant expressions

from Mathews et al. (1995), using values taken from computations of Buffett and
Mathews (unpublished) for the needed deformability parameters together with
values obtained for the wobble resonance parameters in the course of computations
of the nutation results of Mathews et al. (2002). The deformability parameters
for an elliptical, rotating, elastic, and oceanless Earth model based on the 1-
second reference period preliminary reference Earth model (PREM) (Dziewonski
and Anderson, 1981) with the ocean layer replaced by solid, and corrections to
these for the effects of mantle anelasticity, were found by integration of the tidal
deformation equations. Anelasticity computations were based on the Widmer et
al. (1991) model of mantle Q. As in Wahr and Bergen (1986), a power law was
assumed for the frequency dependence of Q, with 200 s as the reference period; the
value α = 0.15 was used for the power law index. The anelasticity contribution
(out-of-phase and in-phase) to the tidal changes in the geopotential coefficients is
at the level of 1 − 2% in-phase, and 0.5 − 1% out-of-phase, i.e., of the order of
10−10. The effects of anelasticity, ocean loading and currents, and electromagnetic
couplings on the wobbles result in indirect contributions to k

(0)
21 and k

(+)
21 which are

almost fully accounted for through the values of the wobble resonance parameters.
Also shown in Table 6.4 are the resonance parameters for the load Love numbers
h′21, k′21, and l′21, which are relevant to the solid Earth deformation caused by
ocean tidal loading and to the consequential changes in the geopotential. (Only
the real parts are shown: the small imaginary parts make no difference to the
effect to be now considered which is itself small.)

Table 6.4: Parameters in the resonance formulae for k
(0)
21 , k

(+)
21 and the load Love numbers.

k
(0)
21 k

(+)
21

α Re Lα Im Lα Re Lα Im Lα
0 0.29954 −0.1412× 10−2 −0.804× 10−3 0.237× 10−5

1 −0.77896× 10−3 −0.3711× 10−4 0.209× 10−5 0.103× 10−6

2 0.90963× 10−4 −0.2963× 10−5 −0.182× 10−6 0.650× 10−8

3 −0.11416× 10−5 0.5325× 10−7 −0.713× 10−9 −0.330× 10−9

Load Love numbers (Real parts only)
h′21 l′21 k′21

0 −0.99500 0.02315 −0.30808
1 1.6583× 10−3 2.3232× 10−4 8.1874× 10−4

2 2.8018× 10−4 −8.4659× 10−6 1.4116× 10−4

3 5.5852× 10−7 1.0724× 10−8 3.4618× 10−7

The expressions given in Section 6.3 for the contributions from ocean tidal loading
assume the constant nominal value k′2

(nom) = −0.3075 for k′ of the degree 2 tides.
Further contributions arise from the frequency dependence of k′21. These may be
expressed, following Wahr and Sasao (1981), in terms of an effective ocean tide

contribution δk(OT )(σ) to the body tide Love number k
(0)
21 :

δk(OT )(σ) = [k′21(σ)− k′2(nom)]

(
4πGρwR

5ḡ

)
A21(σ), (6.11)
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where G is the constant of universal gravitation, ρw is the density of sea water
(1025 kg m−3), R is the Earth’s mean radius (6.371 × 106 m), ḡ is the mean
acceleration due to gravity at the Earth’s surface (9.820 m s−2), and A21(σ) is
the admittance for the degree 2 tesseral component of the ocean tide of frequency
σ in cpsd:

A21(σ) = ζ21(σ)/H̄(σ).

ζ21 is the complex amplitude of the height of the (nm) = (21) component of the
ocean tide, and H̄ is the height equivalent of the amplitude of the tide generating
potential, the bar being a reminder that the spherical harmonics used in defining
the two amplitudes should be identically normalized. Wahr and Sasao (1981)
employed the factorized form

A21(σ) = fFCN (σ) fOD(σ),

wherein the first factor represents the effect of the FCN resonance, and the second,
that of other ocean dynamic factors. The following empirical formulae (Mathews
et al., 2002) which provide good fits to the FCN factors of a set of 11 diurnal tides
(Desai and Wahr, 1995) and to the admittances obtainable from the ocean load
angular momenta of four principal tides (Chao et al., 1996) are used herein:

fOD(σ) = (1.3101− 0.8098 i)− (1.1212− 0.6030 i)σ,

fFCN (σ) = 0.1732 + 0.9687 feqm(σ),

feqm(σ) =
γ(σ)

1− (3ρw/5ρ̄)γ′(σ)
,

where γ = 1 + k − h and γ′ = 1 + k′ − h′, ρ̄ is the Earth’s mean density. (Here k

stands for k
(0)
21 , and similarly for the other symbols. Only the real parts need be

used.) feqm is the FCN factor for a global equilibrium ocean.

Table 6.5a shows the values of

δkf ≡ (k
(0)
21 (σ)− k21) + δkOT21 (σ),

along with the real and imaginary parts of the amplitude (A1δkfHf ). The tides
listed are those for which either of the parts is at least 10−13 after round-off.
(A cutoff at this level is used for the individual terms in order that accuracy
at the level of 3 × 10−12 be not affected by the accumulated contributions from
the numerous smaller terms that are disregarded.) Roughly half the value of the
imaginary part comes from the ocean tide term, and the real part contribution
from this term is of about the same magnitude.

The values used for k
(0)
21 (σ) in evaluating δkf are from an exact computation

necessarily involving use of the framework of nutation-wobble theory which is
outside the scope of this chapter. If the (approximate) resonance formula were
used instead for the computation, the resulting numbers for δkRf and δkIf would
require small corrections to match the exact values. In units of 10−5, they are (in-
phase, out-of-phase) (1, 1) for Q1, (1, 1) for O1 and its companion having Doodson
numbers 145,545, (1, 0) for No1, (0,−1) for P1, (244, 299) for ψ1, (12, 12) for φ1,
(3, 2) for J1, and (2, 1) for Oo1 and its companion with Doodson numbers 185,565.
These are the only tides for which the corrections would contribute nonnegligibly
to the numbers listed in the last two columns of the table.

Calculation of the correction due to any tidal constituent is illustrated by the
following example for K1. Given that Am = A1 = −3.1274 × 10−8, and that
Hf = 0.36870, θf = (θg+π), and k

(0)
21 = (0.25746+0.00118 i) for this tide, one finds

on subtracting the nominal value (0.29830 − 0.00144 i) that δkf = (−0.04084 +
0.00262 i). Equation (6.8b) then yields:

(∆C̄21)K1
= 470.9× 10−12 sin(θg + π)− 30.2× 10−12 cos(θg + π),

(∆S̄21)K1
= 470.9× 10−12 cos(θg + π) + 30.2× 10−12 sin(θg + π).
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Table 6.5a: The in-phase (ip) amplitudes (A1δk
R
f Hf ) and the out-of-phase (op) amplitudes(A1δk

I
fHf )

of the corrections for frequency dependence of k
(0)
21 , taking the nominal value k21 for the

diurnal tides as (0.29830 − i 0.00144). Units: 10−12. The entries for δkRf and δkIf are in

units of 10−5. Multipliers of the Doodson arguments identifying the tidal terms are given,
as also those of the Delaunay variables characterizing the nutations produced by these
terms.

Name deg/hr Doodson τ s h p N ′ ps ` `′ F D Ω δkRf δkIf Amp. Amp.

No. /10−5 /10−5 (ip) (op)

2Q1 12.85429 125,755 1 -3 0 2 0 0 2 0 2 0 2 -29 3 -0.1 0.0
σ1 12.92714 127,555 1 -3 2 0 0 0 0 0 2 2 2 -30 3 -0.1 0.0

13.39645 135,645 1 -2 0 1 -1 0 1 0 2 0 1 -45 5 -0.1 0.0
Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -46 5 -0.7 0.1
ρ1 13.47151 137,455 1 -2 2 -1 0 0 -1 0 2 2 2 -49 5 -0.1 0.0

13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -82 7 -1.3 0.1
O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -83 7 -6.8 0.6
τ1 14.02517 147,555 1 -1 2 0 0 0 0 0 0 2 0 -91 9 0.1 0.0

Nτ1 14.41456 153,655 1 0 -2 1 0 0 1 0 2 -2 2 -168 14 0.1 0.0
14.48520 155,445 1 0 0 -1 -1 0 -1 0 2 0 1 -193 16 0.1 0.0

Lk1 14.48741 155,455 1 0 0 -1 0 0 -1 0 2 0 2 -194 16 0.4 0.0
No1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 -197 16 1.3 -0.1

14.49890 155,665 1 0 0 1 1 0 1 0 0 0 1 -198 16 0.3 0.0
χ1 14.56955 157,455 1 0 2 -1 0 0 -1 0 0 2 0 -231 18 0.3 0.0

14.57176 157,465 1 0 2 -1 1 0 -1 0 0 2 1 -233 18 0.1 0.0
π1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -834 58 -1.9 0.1

14.95673 163,545 1 1 -2 0 -1 0 0 0 2 -2 1 -1117 76 0.5 0.0
P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1138 77 -43.4 2.9

15.00000 164,554 1 1 -1 0 0 -1 0 -1 2 -2 2 -1764 104 0.6 0.0
S1 15.00000 164,556 1 1 -1 0 0 1 0 1 0 0 0 -1764 104 1.6 -0.1

15.02958 165,345 1 1 0 -2 -1 0 -2 0 2 0 1 -3048 92 0.1 0.0
15.03665 165,535 1 1 0 0 -2 0 0 0 0 0 -2 -3630 195 0.1 0.0
15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -3845 229 -8.8 0.5

K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 -4084 262 470.9 -30.2
15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 -4355 297 68.1 -4.6
15.04548 165,575 1 1 0 0 2 0 0 0 0 0 2 -4665 334 -1.6 0.1
15.07749 166,455 1 1 1 -1 0 0 -1 0 0 1 0 85693 21013 0.1 0.0
15.07993 166,544 1 1 1 0 -1 -1 0 -1 0 0 -1 35203 2084 -0.1 0.0

ψ1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 22794 358 -20.6 -0.3
15.08214 166,556 1 1 1 0 0 1 0 1 -2 2 -2 22780 358 0.3 0.0
15.08434 166,564 1 1 1 0 1 -1 0 -1 0 0 1 16842 -85 -0.3 0.0
15.11392 167,355 1 1 2 -2 0 0 -2 0 0 2 0 3755 -189 -0.2 0.0
15.11613 167,365 1 1 2 -2 1 0 -2 0 0 2 1 3552 -182 -0.1 0.0

φ1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 3025 -160 -5.0 0.3
15.12542 167,565 1 1 2 0 1 0 0 0 -2 2 -1 2892 -154 0.2 0.0
15.16427 168,554 1 1 3 0 0 -1 0 -1 -2 2 -2 1638 -93 -0.2 0.0

θ1 15.51259 173,655 1 2 -2 1 0 0 1 0 0 -2 0 370 -20 -0.5 0.0
15.51480 173,665 1 2 -2 1 1 0 1 0 0 -2 1 369 -20 -0.1 0.0
15.58323 175,445 1 2 0 -1 -1 0 -1 0 0 0 -1 325 -17 0.1 0.0

J1 15.58545 175,455 1 2 0 -1 0 0 -1 0 0 0 0 324 -17 -2.1 0.1
15.58765 175,465 1 2 0 -1 1 0 -1 0 0 0 1 323 -16 -0.4 0.0

So1 16.05697 183,555 1 3 -2 0 0 0 0 0 0 -2 0 194 -8 -0.2 0.0
16.12989 185,355 1 3 0 -2 0 0 -2 0 0 0 0 185 -7 -0.1 0.0

Oo1 16.13911 185,555 1 3 0 0 0 0 0 0 -2 0 -2 184 -7 -0.6 0.0
16.14131 185,565 1 3 0 0 1 0 0 0 -2 0 -1 184 -7 -0.4 0.0
16.14352 185,575 1 3 0 0 2 0 0 0 -2 0 0 184 -7 -0.1 0.0

ν1 16.68348 195,455 1 4 0 -1 0 0 -1 0 -2 0 -2 141 -4 -0.1 0.0
16.68569 195,465 1 4 0 -1 1 0 -1 0 -2 0 -1 141 -4 -0.1 0.0
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The variation of k
(0)
20 across the zonal tidal band, (nm) = (20), is due to mantle

anelasticity; it is described by the formula

k
(0)
20 = 0.29525− 5.796× 10−4

{
cot

απ

2

[
1−

(
fm
f

)α]
+ i

(
fm
f

)α}
(6.12)

on the basis of the anelasticity model referred to earlier. Here f is the frequency
of the zonal tidal constituent, fm is the reference frequency equivalent to a period
of 200 s, and α = 0.15. The δkf in Table 6.5b are the differences between k

(0)
20

computed from the above formula and the nominal value k20 = 0.30190 given in
Table 6.3.

The total variation in geopotential coefficient C̄20 is obtained by adding to the
result of Step 1 the sum of the contributions from the tidal constituents listed in
Table 6.5b computed using Equation (6.8a). The tidal variations in C̄2m and S̄2m

for the other m are computed similarly, except that Equation (6.8b) is to be used
together with Table 6.5a for m = 1 and Table 6.5c for m = 2.

Table 6.5b: Corrections for frequency dependence of k
(0)
20 of the zonal tides due to anelasticity.

Units: 10−12. The nominal value k20 for the zonal tides is taken as 0.30190. The real
and imaginary parts δkRf and δkIf of δkf are listed, along with the corresponding in-phase

(ip) amplitude (A0Hfδk
R
f ) and out-of-phase (op) amplitude (A0Hfδk

I
f ) to be used in

Equation (6.8a).

Name Doodson deg/hr τ s h p N ′ ps ` `′ F D Ω δkRf Amp. δkIf Amp.

No. (ip) (op)

55,565 0.00221 0 0 0 0 1 0 0 0 0 0 1 0.01347 16.6 -0.00541 -6.7
55,575 0.00441 0 0 0 0 2 0 0 0 0 0 2 0.01124 -0.1 -0.00488 0.1

Sa 56,554 0.04107 0 0 1 0 0 -1 0 -1 0 0 0 0.00547 -1.2 -0.00349 0.8
Ssa 57,555 0.08214 0 0 2 0 0 0 0 0 -2 2 -2 0.00403 -5.5 -0.00315 4.3

57,565 0.08434 0 0 2 0 1 0 0 0 -2 2 -1 0.00398 0.1 -0.00313 -0.1
58,554 0.12320 0 0 3 0 0 -1 0 -1 -2 2 -2 0.00326 -0.3 -0.00296 0.2

Msm 63,655 0.47152 0 1 -2 1 0 0 1 0 0 -2 0 0.00101 -0.3 -0.00242 0.7
65,445 0.54217 0 1 0 -1 -1 0 -1 0 0 0 -1 0.00080 0.1 -0.00237 -0.2

Mm 65,455 0.54438 0 1 0 -1 0 0 -1 0 0 0 0 0.00080 -1.2 -0.00237 3.7
65,465 0.54658 0 1 0 -1 1 0 -1 0 0 0 1 0.00079 0.1 -0.00237 -0.2
65,655 0.55366 0 1 0 1 0 0 1 0 -2 0 -2 0.00077 0.1 -0.00236 -0.2

Msf 73,555 1.01590 0 2 -2 0 0 0 0 0 0 -2 0 -0.00009 0.0 -0.00216 0.6
75,355 1.08875 0 2 0 -2 0 0 -2 0 0 0 0 -0.00018 0.0 -0.00213 0.3

Mf 75,555 1.09804 0 2 0 0 0 0 0 0 -2 0 -2 -0.00019 0.6 -0.00213 6.3
75,565 1.10024 0 2 0 0 1 0 0 0 -2 0 -1 -0.00019 0.2 -0.00213 2.6
75,575 1.10245 0 2 0 0 2 0 0 0 -2 0 0 -0.00019 0.0 -0.00213 0.2

Mstm 83,655 1.56956 0 3 -2 1 0 0 1 0 -2 -2 -2 -0.00065 0.1 -0.00202 0.2
Mtm 85,455 1.64241 0 3 0 -1 0 0 -1 0 -2 0 -2 -0.00071 0.4 -0.00201 1.1

85,465 1.64462 0 3 0 -1 1 0 -1 0 -2 0 -1 -0.00071 0.2 -0.00201 0.5
Msqm 93,555 2.11394 0 4 -2 0 0 0 0 0 -2 -2 -2 -0.00102 0.1 -0.00193 0.2
Mqm 95,355 2.18679 0 4 0 -2 0 0 -2 0 -2 0 -2 -0.00106 0.1 -0.00192 0.1

6.2.2 Treatment of the permanent tide

The degree 2 zonal tide generating potential has a mean (time average) value that
is nonzero. This time independent (nm) = (20) potential produces a permanent
deformation and a consequent time independent contribution to the geopotential
coefficient C̄20. In formulating a geopotential model, two approaches may be
taken (see Chapter 1). When the time independent contribution is included in
the adopted value of C̄20, then the value is termed “zero tide” and will be noted
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Table 6.5c: Amplitudes (A2δkfHf ) of the corrections for frequency dependence of k
(0)
22 , taking the

nominal value k22 for the sectorial tides as (0.30102 − i 0.00130). Units: 10−12. The
corrections are only to the real part.

Name Doodson deg/hr τ s h p N ′ ps ` `′ F D Ω δkRf Amp.

No.

N2 245,655 28.43973 2 -1 0 1 0 0 1 0 2 0 2 0.00006 -0.3
M2 255,555 28.98410 2 0 0 0 0 0 0 0 2 0 2 0.00004 -1.2

here C̄zt20. If the time independent contribution is not included in the adopted
value of C̄20, then the value is termed “conventional tide free” and will be noted
here C̄tf20 .

In the case of a “zero tide” geopotential model, the model of tidal effects to be
added should not once again contain a time independent part. One must not then
use the expression (6.6) as it stands for modeling ∆C̄20; its permanent part must
first be restored. This is Step 3 of the computation, which provides ∆C̄zt20, to be
used with a “zero tide” geopotential model.

∆C̄zt20 = ∆C̄20 −∆C̄perm20 (6.13)

where ∆C̄20 is given by Equation (6.6) and where ∆C̄perm20 is the time-independent
part:

∆C̄perm20 = A0H0k20 = (4.4228× 10−8)(−0.31460)k20. (6.14)

In the case of EGM2008, the difference between the zero-tide and tide-free value
of C20 is −4.1736 × 10−9. Assuming the same values for A0, H0 and k20, the
tide-free value of C20 corresponding to Table 6.2 would be −0.48416531× 10−3.

The use of “zero tide” values and the subsequent removal of the effect of the
permanent tide from the tide model is presented for consistency with the 18th
IAG General Assembly Resolution 16.

6.3 Effect of the ocean tides

The dynamical effects of ocean tides are most easily incorporated as periodic
variations in the normalized Stokes’ coefficients of degree n and order m ∆C̄nm
and ∆S̄nm. These variations can be evaluated as

[∆C̄nm − i∆S̄nm](t) =
∑
f

−∑
+

(C±f,nm ∓ iS
±
f,nm)e±iθf (t), (6.15)

where C±f,nm and S±f,nm are the geopotential harmonic amplitudes (see more in-
formation below) for the tide constituent f , and where θf (t) is the argument of
the tide constituent f as defined in the explanatory text below Equation (6.8e).

Ocean tide models are typically developed and distributed as gridded maps of tide
height amplitudes. These models provide in-phase and quadrature amplitudes of
tide heights for selected, main tidal frequencies (or main tidal waves), on a variable
grid spacing over the oceans. Using standard methods of spherical harmonic
decomposition and with the use of an Earth loading model, the maps of ocean
tide height amplitudes have been converted to spherical harmonic coefficients of
the geopotential, and provided for direct use in Equation (6.15). This computation
follows Equation (6.21) and has been carried out for the tide model proposed in
Section 6.3.2.
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Typically, an ocean tide model provides maps for only the largest tides or main
waves. The spectrum of tidal geopotential perturbations can be completed by
interpolation from the main waves to the smaller, secondary waves, using an
assumption of linear variation of tidal admittance between closely spaced tidal
frequencies. For each secondary wave, the geopotential harmonic amplitudes can
be derived from the amplitudes of two nearby main lines, or pivot waves, (labeled
with subscripts 1 and 2) as

C±f,nm =
θ̇f−θ̇1
θ̇2−θ̇1

.
Hf

H2
C±2,nm +

θ̇2−θ̇f
θ̇2−θ̇1

.
Hf

H1
C±1,nm

S±f,nm =
θ̇f−θ̇1
θ̇2−θ̇1

.
Hf

H2
S±2,nm +

θ̇2−θ̇f
θ̇2−θ̇1

.
Hf

H1
S±1,nm

(6.16)

where H is the astronomic amplitude of the considered wave. See an example in
Table 6.7 developed for the main waves of FES2004 (see Section 6.3.2).

Some background information on the determination of the coefficients is given
in Section 6.3.1, and is included here for completeness. It is not necessary for
the evaluation of tidal perturbations to the geopotential. Information on selected
tidal models and their use is provided in Section 6.3.2.

6.3.1 Background on ocean tide models

Ocean tide models are conventionally expressed in terms of amplitude and phase
of waves at certain discrete frequencies.

ξ(φ, λ, t) =
∑
f

Zf (φ, λ) cos (θf (t)− ψf (φ, λ)) (6.17)

where Zf is the amplitude of wave f, ψf is the phase at Greenwich and θf is the
Doodson argument, see the explanatory text below Equation (6.8e).

When expanding amplitudes (Zf ) and phases (ψf ) of the different waves of tides
(from cotidal grids) in spherical harmonic functions of Zfcos(ψf ) and Zfsin(ψf ),
it yields:

ξ(φ, λ, t) =
∑
f

N∑
n=1

n∑
m=0

P̄nm(sinφ)

−∑
+

ξ±f,nm(λ, t) (6.18)

where

ξ±f,nm(λ, t) = C̄±f,nm cos(θf + χf ±mλ) + S̄±f,nm sin(θf + χf ±mλ) (6.19)

The couples of coefficients
(
C̄±f,nm, S̄

±
f,nm

)
represent prograde and retrograde nor-

malized spherical harmonic coefficients of the main wave f at degree n and order

m, and can be alternately expressed in terms of amplitude ˆ̄C±f,nm and phase ε±f,nm
such as:

C̄±f,nm = ˆ̄C±f,nm sin(ε±f,nm)

S̄±f,nm = ˆ̄C±f,nm cos(ε±f,nm)
(6.20)

The χf values agree with the so-called Shureman convention which is traditionally
applied in cotidal maps. They comply with the Doodson-Warburg convention
which is defined according to the sign of the harmonic amplitude Hf (see Table 6.6
according to Cartwright and Eden, 1973).

For each wave f , the coefficients C±f,nm and S±f,nm to be used in Equation (6.15)
can be computed as

C±f,nm = 4πGρw
ge

(
1+k′n
2n+1

)
ˆ̄C±f,nm sin(ε±f,nm + χf )

S±f,nm = 4πGρw
ge

(
1+k′n
2n+1

)
ˆ̄C±f,nm cos(ε±f,nm + χf )

(6.21)
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Table 6.6: Values of the phase bias χf according to the sign of Hf

Hf > 0 Hf < 0

n1=0, long period wave π 0
n1=1, diurnal wave π

2 −π2
n1=2, semi-diurnal wave 0 π

where G and ge are given in Chapter 1, ρw is the density of seawater (1025 kg
m−3) and where k′n is the load deformation coefficient of degree n (k′2 =−0.3075,
k′3 =−0.195, k′4 =−0.132, k′5 =−0.1032, k′6 =−0.0892).

6.3.2 Ocean tide models

The practical implementation of ocean tide models in this form begins with iden-
tification of the underlying ocean tide height model. Once this model is identified,
further needed information can include the specification of maximum degree and
order of the expansion, the identification of the pivot waves for interpolation, the
special handling (if necessary) of the solar (radiational) tides, or the long-period
tidal bands.

For the case of the FES2004 ocean tide model, these details of implementation
are provided next.

FES2004

The FES2004 ocean tide model (Lyard et al., 2006) includes long period waves
(Sa, Ssa, Mm, Mf , Mtm, Msqm), diurnal waves (Q1, O1, P1, K1), semi-diurnal
waves (2N2, N2, M2, T2, S2, K2) and the quarter-diurnal wave (M4

5). For direct
use in Equation (6.15), the coefficients C±f,nm and S±f,nm for the main tidal waves

of FES2004 can be found at <6>

The tide height coefficients can be found in the file <7> , both in the form of the

coefficients C̄±f,nm and S̄±f,nm and in the form of the amplitudes ˆ̄C±f,nm and phases

ε±f,nm, as defined in Equations (6.19) and (6.20). They have been computed up
to degree and order 100 by quadrature method from quarter-degree cotidal grids.
Then ellipsoidal corrections to spherical harmonics were applied (Balmino, 2003)
in order to take into account that tidal models are described on the oblate shape
of the Earth.

Table 6.7 provides a list of admittance waves which can be taken into account
to complement the model. It indicates the pivot waves for linear interpolation
following Equation (6.16), where indices 1 and 2 refer to the two pivot waves.

It is to be noticed that radiational waves like S1 and S2 require special handling,
since the common altimetric models (including FES2004) for these tides include
the contributions of atmospheric pressure variations on the ocean height (i.e. the
radiational tide). As a result, neither S1 and S2 are used as pivot waves for
interpolation in Table 6.7. While an S2 wave is available as a part of the FES2004
model, a mean S1 wave is given outside FES2004 and available in file <8>.

The additionally provided mean S1 wave should only be used in case the gravita-
tional influences of mass transport from an ocean circulation model like MOG2D
(Carrère and Lyard, 2003) are not also modeled. This is because the S1 signal
is generally part of such ocean circulation models provided with an interval of 6
hours.

Moreover, very long period waves like Ω1 (18.6 yr) and Ω2 (9.3 yr) which are not
yet correctly observed can be modeled as equilibrium waves. Their amplitudes
(and phases) are computed from the astronomical amplitude Hf considering the
elastic response of the Earth through the Love numbers:

5The χ value for M4, not given in Table 6.6, is 0
6ftp://tai.bipm.org/iers/conv2010/chapter6/tidemodels/fes2004 Cnm-Snm.dat
7ftp://tai.bipm.org/iers/conv2010/chapter6/tidemodels/fes2004.dat
8ftp://tai.bipm.org/iers/conv2010/chapter6/tidemodels/S1.dat
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ˆ̄Cf,20 =
1 + k2 − h2√

4π
|Hf |, εf,20 = −π

2

where k2 = 0.29525 and h2 = 0.6078 are the Love numbers of potential and
deformation, respectively.

Influence of tidal models

For a satellite like Stella (altitude 800 km, inclination 98.7◦ and eccentricity 0.001),
for one day of integration, the effects of ocean tides are typically of order several
cm and can reach 20 cm. It is estimated that the main waves of the FES2004
model typically represent 80% of the effect (Biancale, 2008).

For Starlette (altitude 800 km, inclination 49.8◦ and eccentricity 0.02) and Lageos1
(altitude 5900 km, inclination 109.8◦ and eccentricity 0.005), integration time of
6 and 7 days, respectively, showed a 3-D RMS difference (mostly along-track) of 9
and 7 mm, respectively, for the difference between FES2004 and the older CSR3.0
ocean tide model (Ries, 2010).

Table 6.7: List of astronomical amplitudes Hf (m) for main waves of
FES2004 (in bold) and for some secondary waves (with their pivot waves
when they have to be linearly interpolated).

Darwin’s symbol Doodson’s number Hf Pivot wave 1 Pivot wave 2

Ω1 055.565 .02793
Ω2 055.575 -.00027
Sa 056.554 -.00492

Ssa 057.555 -.03100
Sta 058.554 -.00181 057.555 065.455

Msm 063.655 -.00673 057.555 065.455
065.445 .00231 057.555 065.455

Mm 065.455 -.03518
065.465 .00229 065.455 075.555
065.555 -.00375 065.455 075.555
065.655 .00188 065.455 075.555

Msf 073.555 -.00583 065.455 075.555
075.355 -.00288 065.455 075.555

Mf 075.555 -.06663
075.565 -.02762 075.555 085.455
075.575 -.00258 075.555 085.455

Mstm 083.655 -.00242 075.555 085.455
083.665 -.00100 075.555 085.455

Mtm 085.455 -.01276
085.465 -.00529 085.455 093.555

Msqm 093.555 -.00204
095.355 -.00169 085.455 093.555
117.655 -.00194 135.455 145.555

2Q1 125.755 -.00664 135.655 145.555
σ1 127.555 -.00802 135.655 145.555
σ1 135.645 -.00947 135.655 145.555
Q1 135.655 -.05020

137.445 -.00180 135.655 145.555
ρ1 137.455 -.00954 135.655 145.555

145.545 -.04946 135.655 145.555
O1 145.555 -.26221

145.755 .00170 145.555 165.555
τ1 147.555 .00343 145.555 165.555

153.655 .00194 145.555 165.555
155.455 .00741 145.555 165.555

continued
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Darwin’s symbol Doodson’s number Hf Pivot wave 1 Pivot wave 2
155.555 -.00399 145.555 165.555

M1 155.655 .02062 145.555 165.555
155.665 .00414 145.555 165.555

χ1 157.455 .00394 145.555 165.555
π1 162.556 -.00714 145.555 165.555
P1 163.555 -.12203
S1 164.556 .00289

K1− 165.545 -.00730 145.555 165.555
K1 165.555 .36878
K1+ 165.565 .05001 145.555 165.555
ψ1 166.554 .00293 145.555 165.555
ϕ1 167.555 .00525 145.555 165.555
θ1 173.655 .00395 145.555 165.555
J1 175.455 .02062 145.555 165.555

175.465 .00409 145.555 165.555
So1 183.555 .00342 145.555 165.555

185.355 .00169 145.555 165.555
Oo1 185.555 .01129 145.555 165.555

185.565 .00723 145.555 165.555

ν1 195.455 .00216 145.555 165.555
3N2 225.855 .00180 235.755 245.655
ε2 227.655 .00467 235.755 245.655

2N2 235.755 .01601
µ2 237.555 .01932 235.755 245.655

245.555 -.00389 237.755 245.655
245.645 -.00451 237.755 245.655

N2 245.655 .12099
ν2 247.455 .02298 245.655 255.555
γ2 253.755 -.00190 245.655 255.555
α2 254.556 -.00218 245.655 255.555

255.545 -.02358 245.655 255.555
M2 255.555 .63192
β2 256.554 .00192 255.555 275.555
λ2 263.655 -.00466 255.555 275.555
L2 265.455 -.01786 255.555 275.555

265.555 .00359 255.555 275.555
265.655 .00447 255.555 275.555
265.665 .00197 255.555 275.555

T2 272.556 .01720 255.555 275.555
S2 273.555 .29400
R2 274.554 -.00246 255.555 275.555
K2 275.555 .07996
K2+ 275.565 .02383 255.555 275.555
K2++ 275.575 .00259 255.555 275.555

η2 285.455 .00447 255.555 275.555
285.465 .00195 255.555 275.555

M4 455.555

6.4 Solid Earth pole tide

The pole tide is generated by the centrifugal effect of polar motion, characterized
by the potential

∆V (r, θ, λ) = −Ω2r2

2
sin 2θ (m1 cosλ+m2 sinλ)

= −Ω2r2

2
sin 2θ Re [(m1 − im2) eiλ].

(6.22)
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(See Section 7.1.4 for further details, including the relation of the wobble vari-
ables (m1,m2) to the polar motion variables (xp, yp).) The deformation which
constitutes this tide produces a perturbation

−Ω2r2

2
sin 2θ Re [k2 (m1 − im2) eiλ]

in the external potential, which is equivalent to changes in the geopotential coef-
ficients C21 and S21. Using for k2 the value 0.3077 + 0.0036 i appropriate to the
polar tide yields

∆C̄21 = −1.333× 10−9(m1 + 0.0115m2),

∆S̄21 = −1.333× 10−9(m2 − 0.0115m1),

where m1 and m2 are in seconds of arc.

6.5 Ocean pole tide

The ocean pole tide is generated by the centrifugal effect of polar motion on the
oceans. This centrifugal effect is defined in Equation (6.22) from Section 6.4. Polar
motion is dominated by the 14-month Chandler wobble and annual variations. At
these long periods, the ocean pole tide is expected to have an equilibrium response,
where the displaced ocean surface is in equilibrium with the forcing equipotential
surface.

Desai (2002) presents a self-consistent equilibrium model of the ocean pole tide.
This model accounts for continental boundaries, mass conservation over the oceans,
self-gravitation, and loading of the ocean floor. Using this model, the ocean pole
tide produces the following perturbations to the normalized geopotential coeffi-
cients, as a function of the wobble variables (m1,m2).

 ∆C̄nm

∆S̄nm

 = Rn


 ĀRnm

B̄Rnm

(m1γ
R
2 +m2γ

I
2

)
+

 ĀInm

B̄Inm

(m2γ
R
2 −m1γ

I
2

) (6.23a)

where

Rn =
Ω2a4

E

GM

4πGρw
ge

(
1 + k′n
2n+ 1

)
(6.23b)

and
Ω, aE , GM , ge, and G are defined in Chapter 1,
ρw = density of sea water = 1025 kgm−3,
k′n = load deformation coefficients (k′2 = −0.3075, k′3 = −0.195, k′4 = −0.132, k′5 =
−0.1032, k′6 = −0.0892),
γ = γR2 + iγI2 = (1 + k2 − h2) = 0.6870 + i0.0036

(Values of k2 and h2 appropriate for the pole tide are as given in Sections 6.4
and 7.1.4),
(m1,m2) are the wobble parameters in radians. Refer to Section 7.1.4 for the
relationship between the wobble variables (m1,m2) and the polar motion variable
(xp, yp).
The coefficients from the self-consistent equilibrium model, Ānm = ĀRnm + iĀInm
and B̄nm = B̄Rnm + iB̄Inm, are provided to degree and order 360 at <9>.

The (n,m) = (2, 1) coefficients are the dominant terms of the ocean pole tide.
Using the values defined above yields the following (n,m) = (2, 1) coefficients for
the ocean pole tide:

∆C̄21 = −2.1778× 10−10(m1 − 0.01724m2),

∆S̄21 = −1.7232× 10−10(m2 − 0.03365m1),
(6.24)

9ftp://tai.bipm.org/iers/conv2010/chapter6/desaiscopolecoef.txt
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where m1 and m2 are in seconds of arc. Approximately 90% of the variance of
the ocean pole tide potential is provided by the degree n = 2 spherical harmonic
components, with the next largest contributions provided by the degree n = 1 and
n = 3 components, respectively (see Figure 6.1). Expansion to spherical harmonic
degree n = 10 provides approximately 99% of the variance. However, adequate
representation of the continental boundaries will require a spherical harmonic
expansion to high degree and order. The degree n = 1 components are shown in
Figure 6.1 to illustrate the size of the ocean pole tide contribution to geocenter
motion but these terms should not be used in modeling station displacements.
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Figure 6.1: Ocean pole tide: first spherical harmonic components.
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6.6 Conversion of tidal amplitudes defined according to different
conventions

The definition used for the amplitudes of tidal terms in the recent high-accuracy
tables differ from each other and from Cartwright and Tayler (1971). Hartmann
and Wenzel (1995) tabulate amplitudes in units of the potential (m2s−2), while
the amplitudes of Roosbeek (1996), which follow the Doodson (1921) conven-
tion, are dimensionless. To convert them to the equivalent tide heights Hf of the
Cartwright-Tayler convention, multiply by the appropriate factors from Table 6.5.
The following values are used for the constants appearing in the conversion fac-
tors: Doodson constant D1 = 2.63358352855 m2 s−2; ge ≡ g at the equatorial
radius = 9.79828685 (from GM = 3.986004415 × 1014 m3 s−2, Re = 6378136.55
m).

Table 6.8: Factors for conversion to Cartwright-Tayler amplitudes from those defined according to
Doodson’s and Hartmann and Wenzel’s conventions.

From Doodson From Hartmann & Wenzel

f20 = −
√

4π√
5
D1

ge
= −0.426105 f ′20 = 2

√
π

ge
= 0.361788

f21 = − 2
√

24π
3
√

5
D1

ge
= −0.695827 f ′21 = −

√
8π
ge

= −0.511646

f22 =
√

96π
3
√

5
D1

ge
= 0.695827 f ′22 =

√
8π
ge

= 0.511646

f30 = −
√

20π√
7

D1

ge
= −0.805263 f ′30 = 2

√
π

ge
= 0.361788

f31 =
√

720π
8
√

7
D1

ge
= 0.603947 f ′31 =

√
8π
ge

= 0.511646

f32 =
√

1440π
10
√

7
D1

ge
= 0.683288 f ′32 =

√
8π
ge

= 0.511646

f33 = −
√

2880π
15
√

7
D1

ge
= −0.644210 f ′33 = −

√
8π
ge

= −0.511646
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7 Displacement of reference points

Models describing the displacements of reference points due to various effects are
provided. In the following, three kinds of displacements are distinguished:

• Conventional displacements of reference markers on the crust (see Section 7.1)
relate the regularized positions XR(t) of the reference points (see Chapter 4)
to their conventional instantaneous positions. Generally these conventional in-
stantaneous positions are used in data analyses as a priori coordinates for sub-
sequent adjustment of observational data. They include tidal motions (mostly
near diurnal and semidiurnal frequencies) and other accurately modeled dis-
placements of reference markers (mostly at longer periods);

• Other displacements of reference markers (Section 7.2, presently, at the time
of publication, under development) include non-tidal motions associated with
changing environmental loads (very broad spectral content);

• Displacements that affect the internal reference points within the observing
instruments, which are generally technique-dependent, are mentioned in Sec-
tion 7.3.

The first two categories of displacements are described by geophysical models or
gridded convolution results derived from geophysical models. The last category
includes empirical physical effects that have been demonstrated to affect geodetic
observing instruments.

As the non-tidal load displacements (Section 7.2) normally change very little over
typical integration spans and because models for these effects are usually less
accurate, it is generally recommended that they not be included in computing
conventional instantaneous positions. Instead, the corresponding non-tidal load-
ing effects will remain as signals embedded in the geodetic time series results.
These signals can be extracted and compared with the model results referenced
here in post-analysis studies.

In combinations of diverse analysis results, it is particularly important that equiva-
lent displacement models are applied for like effects. Non-tidal load displacements
should be consistently excluded from the conventional instantaneous positions, as
recommended here, or else the same geophysical loading models together with the
same environmental inputs should be applied.

7.1 Models for conventional displacement of reference markers on the crust

This section describes conventional models for displacement due to the body tides
arising from the direct effect of the external tide generating potential (7.1.1), dis-
placement due to ocean tidal loading (7.1.2) and due to diurnal and semidiurnal
atmospheric pressure loading (7.1.3), displacement due to the centrifugal pertur-
bations caused by Earth rotation variations, including the pole tide (7.1.4) and
the loading caused by the ocean pole tide (7.1.5).

7.1.1 Effects of the solid Earth tides

7.1.1.1 Conventional model for solid Earth tides

Site displacements caused by tides of spherical harmonic degree and order
(nm) are characterized by the Love number hnm and the Shida number lnm.
The effective values of these numbers depend on station latitude and tidal
frequency (Wahr, 1981). The latitude dependence and a small interband
variation are caused by the Earth’s ellipticity and the Coriolis force due to
Earth rotation. A strong frequency dependence within the diurnal band is
produced by the Nearly Diurnal Free Wobble resonance associated with the
FCN in the wobbles of the Earth and its core regions which contribute to the
tidal deformations via their centrifugal effects. Additionally, the resonance
in the deformation due to ocean tidal loading, which is not included in the
computations of the last section which use constant load Love numbers, may
be represented in terms of effective contributions to h21 and l21. A further
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frequency dependence, which is most pronounced in the long-period tidal
band, arises from mantle anelasticity leading to corrections to the elastic
Earth Love numbers. The contributions to the Love number parameters
from anelasticity and ocean tidal loading as well as those from the centrifugal
perturbations due to the wobbles have imaginary parts which cause the tidal
displacements to lag slightly behind the tide generating potential. All these
effects need to be taken into account when an accuracy of 1 mm is desired
in determining station positions.

In order to account for the latitude dependence of the effective Love and
Shida numbers, the representation in terms of multiple h and l parameters
employed by Mathews et al. (1995) is used. In this representation, parame-
ters h(0) and l(0) play the roles of h2m and l2m, while the latitude dependence
is expressed in terms of additional parameters h(2), h′ and l(1), l(2), l′. These
parameters are defined through their contributions to the site displacement
as given by equations (7.1a-7.1c) below. Their numerical values as listed in
the Conventions 1996 have since been revised, and the new values presented
in Table 7.2 are used here. These values pertain to the elastic Earth and
anelasticity models referred to in Chapter 6.

The vector displacement ∆~rf due to a tidal term of frequency f is given by
the following expressions that result from evaluation of the defining equation
(7.2) of Mathews et al. (1995):

For a long-period tide of frequency f :

∆~rf =
√

5
4π
Hf

{ [
h(φ)

(
3
2

sin2 φ− 1
2

)
+
√

4π
5
h′
]

cos θf r̂

+3l(φ) sinφ cosφ cos θf n̂

+ cosφ
[
3l(1) sin2 φ−

√
4π
5
l′
]

sin θf ê

}
.

(7.1a)

For a diurnal tide of frequency f :

∆~rf = −
√

5
24π

Hf

{
h(φ)3 sinφ cosφ sin(θf + λ) r̂

+
[
3l(φ) cos 2φ− 3l(1) sin2 φ+

√
24π
5
l′
]

sin(θf + λ) n̂

+
[(

3l(φ)−
√

24π
5
l′
)

sinφ− 3l(1) sinφ cos 2φ
]

cos(θf + λ) ê

}
.

(7.1b)

For a semidiurnal tide of frequency f :

∆~rf =
√

5
96π

Hf

{
h(φ)3 cos2 φ cos(θf + 2λ) r̂

−6 sinφ cosφ
[
l(φ) + l(1)

]
cos(θf + 2λ) n̂

−6 cosφ
[
l(φ) + l(1) sin2 φ

]
sin(θf + 2λ) ê

}
.

(7.1c)

In the above expressions,

h(φ) = h(0) + h(2)(3 sin2 φ− 1)/2,

l(φ) = l(0) + l(2)(3 sin2 φ− 1)/2,
(7.2)
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Hf = amplitude (m) of the tidal term of frequency f ,

φ = geocentric latitude of station,

λ = east longitude of station,

θf = tide argument for tidal constituent with frequency f ,

r̂ = unit vector in radial direction,

ê = unit vector in east direction,

n̂ = unit vector perpendicular to r̂ in the northward direction.

The convention used in defining the tidal amplitude Hf is the one from
Cartwright and Tayler (1971). To convert amplitudes defined according to
other conventions that have been employed in recent more accurate tables,
use the conversion factors given in Chapter 6, Table 6.8.

Equations (7.1) assume that the Love and Shida number parameters are all
real. Generalization to the case of complex parameters is done simply by
making the following replacements for the combinations L cos(θf +mλ) and
L sin(θf +mλ), wherever they occur in those equations:

L cos(θf +mλ)→ LR cos(θf +mλ)− LI sin(θf +mλ), (7.3a)

L sin(θf +mλ)→ LR sin(θf +mλ) + LI cos(θf +mλ), (7.3b)

where L is a generic symbol for h(0), h(2), h′, l(0), l(1), l(2), and l′, and where
LR and LI stand for their respective real and imaginary parts.

The complex values of these 7 parameters are computed for the diurnal
body tides from resonance formulae of the form given in Equation (6.9) of
Chapter 6 using the values listed in Equation (6.10) of that chapter for the
resonance frequencies σα and those listed in Table 7.1 for the coefficients
L0 and Lα relating to each of the multiple h and l Love/Shida numbers.
The manner in which σα and Lα were computed is explained in Chapter 6,
where mention is also made of the models used for the elastic Earth and for
mantle anelasticity. As was noted in that chapter, the frequency dependence
of the ocean tide contributions to certain Earth parameters in the equations
of motion for the wobbles has the effect of making the resonance formulae
inexact. The difference between the exact and resonance formula values is
included in the tabulated values of h

(0)
21 and l

(0)
21 in Table 7.2. (The only case

where this difference makes a contribution above the cut-off in Table 7.3a is
in the radial displacement due to the ψ1 tide.) Also included in the values
listed in Table 7.2 are the resonant ocean tidal loading corrections outlined
in the next paragraph.

Site displacements caused by solid Earth deformations due to ocean tidal
loading have been dealt with in the first section of this chapter. Constant
nominal values were assumed for the load Love numbers in computing these.
The values used for tides of degree 2 were h′2

(nom) = -1.001, l′2
(nom) = 0.0295,

k′2
(nom) = -0.3075. Since resonances in the diurnal band also cause the values

of the load Love numbers to vary, corrections need to be applied to the results
of the first section. These corrections can be expressed in terms of effective
ocean tide contributions δh(OT ) and δl(OT ) to the respective body tide Love
numbers h

(0)
21 and l

(0)
21 . δh(OT ) and δl(OT ) are given by expressions of the form

(6.11) of Chapter 6, with appropriate replacements. They were computed
using the same ocean tide admittances as in that chapter, and using the
resonance parameters listed in Table 6.4 for the load Love numbers; they
are included in the values listed in Table 7.2 under h(0)R and h(0)I for the
diurnal tides.
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Table 7.1: Parameters in the resonance formulae for the displacement Love numbers.

h(0) h(2)

α Re Lα Im Lα Re Lα Im Lα
0 .60671× 10+0 −.2420× 10−2 −.615× 10−3 −.122× 10−4

1 −.15777× 10−2 −.7630× 10−4 .160× 10−5 .116× 10−6

2 .18053× 10−3 −.6292× 10−5 .201× 10−6 .279× 10−8

3 −.18616× 10−5 .1379× 10−6 −.329× 10−7 −.217× 10−8

l(0) l(1)

α Re Lα Im Lα Re Lα Im Lα
0 .84963× 10−1 −.7395× 10−3 .121× 10−2 .136× 10−6

1 −.22107× 10−3 −.9646× 10−5 −.316× 10−5 −.166× 10−6

2 −.54710× 10−5 −.2990× 10−6 .272× 10−6 −.858× 10−8

3 −.29904× 10−7 −.7717× 10−8 −.545× 10−8 .827× 10−11

l(2) l′

α Re Lα Im Lα Re Lα Im Lα
0 .19334× 10−3 −.3819× 10−5 −.221× 10−3 −.474× 10−7

1 −.50331× 10−6 −.1639× 10−7 .576× 10−6 .303× 10−7

2 −.66460× 10−8 .5076× 10−9 .128× 10−6 −.378× 10−8

3 .10372× 10−7 .7511× 10−9 −.655× 10−8 −.291× 10−9

The variation of h
(0)
20 and l

(0)
20 across the zonal tidal band, (nm = 20), due to

mantle anelasticity, is described by the formulae

h
(0)
20 = 0.5998−9.96×10−4

{
cot

απ

2

[
1−

(
fm
f

)α]
+ i

(
fm
f

)α}
, (7.4a)

l
(0)
20 = 0.0831− 3.01× 10−4

{
cot

απ

2

[
1−

(
fm
f

)α]
+ i

(
fm
f

)α}
(7.4b)

on the basis of the anelasticity model already referred to. Here f is the
frequency of the zonal tidal constituent, fm is the reference frequency equiv-
alent to a period of 200 s, and α = 0.15.

Table 7.2 lists the values of h(0), h(2), h′, l(0), l(1), l(2), and l′ for those tidal
frequencies for which they are needed for use in the computational procedure
described below. The tidal frequencies shown in the table are given in cycles
per sidereal day (cpsd). Periods, in solar days, of the nutations associated
with the diurnal tides are also shown.

Computation of the variations of station coordinates due to solid Earth tides,
like that of geopotential variations, is done most efficiently by the use of a
two-step procedure. The evaluations in the first step use the expression in the
time domain for the full degree 2 tidal potential or for the parts that pertain
to particular bands (m = 0, 1, or 2). Nominal values common to all the tidal
constituents involved in the potential and to all stations are used for the Love
and Shida numbers h2m and l2m in this step. They are chosen with reference
to the values in Table 7.2 so as to minimize the computational effort needed
in Step 2. Along with expressions for the dominant contributions from h(0)

and l(0) to the tidal displacements, relatively small contributions from some
of the other parameters are included in Step 1 for reasons of computational
efficiency. The displacements caused by the degree 3 tides are also computed
in the first step, using constant values for h3 and l3.
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Corrections to the results of the first step are needed to take account of the
frequency-dependent deviations of the Love and Shida numbers from their
respective nominal values, and also to compute the out-of-phase contribu-
tions from the zonal tides. Computations of these corrections constitute
Step 2. The total displacement due to the tidal potential is the sum of the
displacements computed in Steps 1 and 2.

The full scheme of computations is outlined in the chart on page 103.

CORRECTIONS FOR THE STATION TIDAL DISPLACEMENTS

Step 1: Corrections to be computed in the time domain

in-phase for degree 2 and 3 Nominal values

. for degree 2 → eq (7.5) h2 → h(φ) = h(0) + h(2)[(3 sin2 φ− 1)/2]
l2 → l(φ) = l(0) + l(2)[(3 sin2 φ− 1)/2]
h(0) = 0.6078, h(2) = −0.0006; l(0) = 0.0847, l(2) = 0.0002

. for degree 3 → eq (7.6) h3 = 0.292 and l3 = 0.015

out-of-phase for degree 2 only Nominal values
. diurnal tides → eq (7.10) hI = −0.0025 and lI = −0.0007
. semidiurnal tides → eq (7.11) hI = −0.0022 and lI = −0.0007

contribution from latitude dependence Nominal values
. diurnal tides → eq (7.8) l(1) = 0.0012
. semidiurnal tides → eq (7.9) l(1) = 0.0024

Step 2: Corrections to be computed in the frequency domain and to be added to the results of Step 1

in-phase for degree 2
. diurnal tides → eqs (7.12) → Sum over all the components of Table 7.3a
. semidiurnal tides → negligible

in-phase and out-of-phase for degree 2

. long-period tides → eqs (7.13) → Sum over all the components of Table 7.3b

Displacement due to degree 2 tides, with nominal values for h
(0)
2m

and l
(0)
2m

The first stage of the Step 1 calculations employs real nominal values h2

and l2 common to all the degree 2 tides for the Love and Shida numbers. It
is found to be computationally most economical to choose these to be the
values for the semidiurnal tides (which have very little intra-band variation).
On using the nominal values, the displacement vector of the station due to
the degree 2 tides is given by

∆~r =

3∑
j=2

GMjR
4
e

GM⊕R3
j

{
h2 r̂

(
3(R̂j · r̂)2 − 1

2

)
+ 3l2(R̂j · r̂)

[
R̂j − (R̂j · r̂) r̂

]}
, (7.5)

where h
(0)
22 and l

(0)
22 of the semidiurnal tides are chosen as the nominal values

h2 and l2. The out-of-phase displacements due to the imaginary parts of the
Love numbers are dealt with separately below. In Equation (7.5),
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Table 7.2: Displacement Love number parameters for degree 2 tides. Superscripts R and I identify
the real and imaginary parts, respectively. Periods are given in solar days and frequencies
in cpsd.

Name Period Frequency h(0)R h(0)I h(2) h′

Semidiurnal -2 .6078 -.0022 -.0006
Diurnal

2Q1 6.86 0.85461 .6039 -.0027 -.0006
σ1 7.10 0.85946 .6039 -.0026 -.0006

135,645 9.12 0.89066 .6036 -.0026 -.0006
Q1 9.13 0.89080 .6036 -.0026 -.0006
ρ1 9.56 0.89565 .6035 -.0026 -.0006

145,545 13.63 0.92685 .6028 -.0025 -.0006
O1 13.66 0.92700 .6028 -.0025 -.0006
τ1 14.77 0.93246 .6026 -.0025 -.0006

Nτ1 23.94 0.95835 .6011 -.0024 -.0006
No1 27.55 0.96381 .6005 -.0023 -.0006
χ1 31.81 0.96865 .5998 -.0023 -.0006
π1 121.75 0.99181 .5878 -.0015 -.0006
P1 182.62 0.99454 .5817 -.0011 -.0006
S1 365.26 0.99727 .5692 -.0004 -.0006

165,545 6798.38 0.99985 .5283 .0023 -.0007
K1 infinity 1.00000 .5236 .0030 -.0007

165,565 -6798.38 1.00015 .5182 .0036 -.0007
165,575 -3399.19 1.00029 .5120 .0043 -.0007

ψ1 -365.26 1.00273 1.0569 .0036 -.0001
166,564 -346.64 1.00288 .9387 -.0050 -.0003

φ1 -182.62 1.00546 .6645 -.0059 -.0006
θ1 -31.81 1.03135 .6117 -.0030 -.0006
J1 -27.55 1.03619 .6108 -.0030 -.0006

Oo1 -13.66 1.07300 .6080 -.0028 -.0006
Long period

55,565 6798.38 .000147 .6344 -.0093 -.0006 .0001
Ssa 182.62 .005461 .6182 -.0054 -.0006 .0001
Mm 27.55 .036193 .6126 -.0041 -.0006 .0001
Mf 13.66 .073002 .6109 -.0037 -.0006 .0001

75,565 13.63 .073149 .6109 -.0037 -.0006 .0001

Name Period Frequency l(0)R l(0)I l(1) l(2) l′

Semidiurnal -2 .0847 -.0007 .0024 .0002

Diurnal

Q1 9.13 0.89080 .0846 -.0006 .0012 .0002 -.0002
145,545 13.63 0.92685 .0846 -.0006 .0012 .0002 -.0002

O1 13.66 0.92700 .0846 -.0006 .0012 .0002 -.0002
No1 27.55 0.96381 .0847 -.0006 .0012 .0002 -.0002

P1 182.62 0.99454 .0853 -.0006 .0012 .0002 -.0002
165,545 6798.38 0.99985 .0869 -.0006 .0011 .0002 -.0003

K1 infinity 1.00000 .0870 -.0006 .0011 .0002 -.0003
165,565 -6798.38 1.00015 .0872 -.0006 .0011 .0002 -.0003

ψ1 -365.26 1.00273 .0710 -.0020 .0019 .0002 .0001
φ1 -182.62 1.00546 .0828 -.0007 .0013 .0002 -.0002
J1 -27.55 1.03619 .0845 -.0006 .0012 .0002 -.0002

Oo1 -13.66 1.07300 .0846 -.0006 .0012 .0002 -.0002
Long period

55,565 6798.38 .000147 .0936 -.0028 .0000 .0002
Ssa 182.62 .005461 .0886 -.0016 .0000 .0002
Mm 27.55 .036193 .0870 -.0012 .0000 .0002
Mf 13.66 .073002 .0864 -.0011 .0000 .0002

75,565 13.63 .073149 .0864 -.0011 .0000 .0002104
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GMj = gravitational parameter for the Moon (j = 2)

or the Sun (j = 3),

GM⊕ = gravitational parameter for the Earth,

R̂j , Rj = unit vector from the geocenter to Moon or Sun

and the magnitude of that vector,

Re = Earth’s equatorial radius,

r̂, r = unit vector from the geocenter to the station and

the magnitude of that vector,

h2 = nominal degree 2 Love number,

l2 = nominal degree 2 Shida number.

Note that the part proportional to h2 gives the radial (not vertical) compo-
nent of the tide-induced station displacement, and the terms in l2 represent
the vector displacement perpendicular to the radial direction (and not in the
horizontal plane).

The computation just described may be generalized to include the latitude
dependence arising through h(2) by simply adding h(2)

[
(3 sin2 φ− 1)/2

]
to

the constant nominal value given above, with h(2) = −0.0006. The addition
of a similar term (with l(2) = 0.0002) to the nominal value of l2 takes care of
the corresponding contribution to the transverse displacement. The resulting
incremental displacements are small, not exceeding 0.4 mm radially and 0.2
mm in the transverse direction.

Displacement due to degree 3 tides

The Love numbers of the degree 3 tides may be taken as real and constant
in computations to the degree of accuracy aimed at here. The displacement
vector due to these tides is then given by

∆~r =

3∑
j=2

GMjR
5
e

GM⊕R4
j

{
h3 r̂

(
5

2
(R̂j · r̂)3 − 3

2
(R̂j · r̂)

)
+ l3

(
15

2
(R̂j · r̂)2 − 3

2

)[
R̂j − (R̂j · r̂)r̂

]}
. (7.6)

Only the Moon’s contribution (j = 2) needs to be computed, the term due
to the Sun being negligible. The transverse part of the displacement (7.6)
does not exceed 0.2 mm, but the radial displacement can reach 1.7 mm.

Contributions to the transverse displacement due to the l(1) term

The imaginary part of l(1) is negligible, as is the intra-band variation of Re
l(1); and l(1) is effectively zero in the zonal band.

In the expressions given below, and elsewhere in this chapter,

Φj = body fixed geocentric latitude of Moon or Sun, and
λj = body fixed east longitude (from Greenwich) of Moon or Sun.

The following formulae may be employed when the use of Cartesian coor-
dinates Xj , Yj , Zj of the body relative to the terrestrial reference frame is
preferred:

P 0
2 (sin Φj) = 1

R2
j

(
3
2
Z2
j − 1

2
R2
j

)
, (7.7a)

P 1
2 (sin Φj) cosλj =

3XjZj

R2
j
,

P 1
2 (sin Φj) sinλj =

3YjZj

R2
j
,

(7.7b)

P 2
2 (sin Φj) cos 2λj = 3

R2
j
(X2

j − Y 2
j ),

P 2
2 (sin Φj) sin 2λj = 6

R2
j
XjYj .

(7.7c)

Contribution from the diurnal band (with l(1) = 0.0012):
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δ~t = −l(1) sinφ

3∑
j=2

GMjR
4
e

GM⊕R3
j

P 1
2 (sin Φj) [sinφ cos(λ− λj) n̂− cos 2φ sin(λ− λj) ê] . (7.8)

Contribution from the semidiurnal band (with l(1) = 0.0024):

δ~t = −1

2
l(1) sinφ cosφ

3∑
j=2

GMjR
4
e

GM⊕R3
j

P 2
2 (sin Φj) [cos 2(λ− λj) n̂+ sinφ sin 2(λ− λj) ê] . (7.9)

The contributions of the l(1) term to the transverse displacement caused
by the diurnal and semidiurnal tides could be up to 0.8 mm and 1.0 mm,
respectively.

Out-of-phase contributions from the imaginary parts of h
(0)
2m and

l
(0)
2m

In the following, hI and lI stand for the imaginary parts of h
(0)
2m and l

(0)
2m.

Contributions δr to radial and δ~t to transverse displacements from diurnal
tides (with hI = −0.0025, lI = −0.0007):

δr = −3

4
hI

3∑
j=2

GMjR
4
e

GM⊕R3
j

sin 2Φj sin 2φ sin(λ− λj), (7.10a)

δ~t = −3

2
lI

3∑
j=2

GMjR
4
e

GM⊕R3
j

sin 2Φj [cos 2φ sin(λ− λj) n̂+ sinφ cos(λ− λj) ê] . (7.10b)

Contributions from semidiurnal tides (with hI=−0.0022, lI=−0.0007):

δr = −3

4
hI

3∑
j=2

GMjR
4
e

GM⊕R3
j

cos2 Φj cos2 φ sin 2(λ− λj), (7.11a)

δ~t =
3

4
lI

3∑
j=2

GMjR
4
e

GM⊕R3
j

cos2 Φj [sin 2φ sin 2(λ− λj) n̂− 2 cosφ cos 2(λ− λj) ê] . (7.11b)

The out-of-phase contribution from the zonal tides has no closed expression
in the time domain.

Computations of Step 2 take account of the intra-band variation of h
(0)
2m and

l
(0)
2m. Variations of the imaginary parts are negligible except as stated below

(see Table 7.3a). For the zonal tides, however, the contributions from the
imaginary part have to be computed in Step 2.

Correction for frequency dependence of the Love and Shida num-
bers

(a) Contributions from the diurnal band

Corrections, which include both in-phase (ip) and out-of-phase (op) parts,
to the radial and transverse station displacements δr and δ~t due to a diurnal
tidal term of frequency f are obtainable from Equation (7.1b):

δr = [δR
(ip)
f sin(θf + λ) + δR

(op)
f cos(θf + λ)] sin 2φ, (7.12a)

δ~t = [δT
(ip)
f cos(θf + λ)− δT (op)

f sin(θf + λ)] sinφ ê

+ [δT
(ip)
f sin(θf + λ) + δT

(op)
f cos(θf + λ)] cos 2φ n̂,

(7.12b)
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where  δR
(ip)
f

δR
(op)
f

 = − 3
2

√
5

24π
Hf

 δhRf

δhIf

 ,

 δT
(ip)
f

δT
(op)
f

 = −3
√

5
24π

Hf

 δlRf

δlIf

 ,

(7.12c)

and

δhRf and δhIf are the differences of h(0)R and h(0)I at frequency f from

the nominal values h2 and hI used in Equations (7.5)

and (7.10a), respectively,

δlRf and δlIf are the differences of l(0)R and l(0)I at frequency f from

the nominal values l2 and lI used in Equations (7.5)

and (7.10b), respectively.

Table 7.3a: Corrections due to the frequency dependence of Love and Shida numbers for diurnal tides.
Units: mm. All terms with radial correction ≥ 0.05 mm are shown. Nominal values are
h2 = 0.6078 and l2 = 0.0847 for the real parts, and hI = −0.0025 and lI = −0.0007 for
the imaginary parts. Frequencies are given in degrees per hour.

Name Frequency Doodson τ s h p N ′ ps ` `′ F D Ω ∆R
(ip)
f ∆R

(op)
f ∆T

(ip)
f ∆T

(op)
f

Q1 13.39866 135,655 1 -2 0 1 0 0 1 0 2 0 2 -0.08 0.00 -0.01 0.01
13.94083 145,545 1 -1 0 0 -1 0 0 0 2 0 1 -0.10 0.00 0.00 0.00

O1 13.94303 145,555 1 -1 0 0 0 0 0 0 2 0 2 -0.51 0.00 -0.02 0.03
No1 14.49669 155,655 1 0 0 1 0 0 1 0 0 0 0 0.06 0.00 0.00 0.00
π1 14.91787 162,556 1 1 -3 0 0 1 0 1 2 -2 2 -0.06 0.00 0.00 0.00
P1 14.95893 163,555 1 1 -2 0 0 0 0 0 2 -2 2 -1.23 -0.07 0.06 0.01

15.03886 165,545 1 1 0 0 -1 0 0 0 0 0 -1 -0.22 0.01 0.01 0.00
K1 15.04107 165,555 1 1 0 0 0 0 0 0 0 0 0 12.00 -0.78 -0.67 -0.03

15.04328 165,565 1 1 0 0 1 0 0 0 0 0 1 1.73 -0.12 -0.10 0.00
ψ1 15.08214 166,554 1 1 1 0 0 -1 0 -1 0 0 0 -0.50 -0.01 0.03 0.00
φ1 15.12321 167,555 1 1 2 0 0 0 0 0 -2 2 -2 -0.11 0.01 0.01 0.00

(b) Contributions from the long-period band

Corrections δr and δ~t due to a zonal tidal term of frequency f include both
ip and op parts. From Equations (7.1a) and (7.3) one finds

δr =

(
3

2
sin2 φ− 1

2

)
(δR

(ip)
f cos θf + δR

(op)
f sin θf ), (7.13a)

δ~t = (δT
(ip)
f cos θf + δT

(op)
f sin θf ) sin 2φ n̂, (7.13b)

where  δR
(ip)
f

δR
(op)
f

 =
√

5
4π
Hf

 δhRf

−δhIf

 ,

 δT
(ip)
f

δT
(op)
f

 = 3
2

√
5

4π
Hf

 δlRf

−δlIf

 .

(7.13c)
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Table 7.3b: Corrections due to the frequency dependence of Love and Shida numbers for zonal tides.
Units: mm. All terms with radial correction ≥ 0.05 mm are shown. Nominal values are
h = 0.6078 and l = 0.0847. Frequencies are given in degrees per hour.

Name Frequency Doodson τ s h p N ′ ps ` `′ F D Ω ∆R
(ip)
f ∆R

(op)
f ∆T

(ip)
f ∆T

(op)
f

0.00221 55,565 0 0 0 0 1 0 0 0 0 0 1 0.47 0.16 0.23 0.07
Ssa 0.08214 57,555 0 0 2 0 0 0 0 0 -2 2 -2 -0.20 -0.11 -0.12 -0.05
Mm 0.54438 65,455 0 1 0 -1 0 0 -1 0 0 0 0 -0.11 -0.09 -0.08 -0.04
Mf 1.09804 75,555 0 2 0 0 0 0 0 0 -2 0 -2 -0.13 -0.15 -0.11 -0.07

1.10024 75,565 0 2 0 0 1 0 0 0 -2 0 -1 -0.05 -0.06 -0.05 -0.03

Values of ∆Rf and ∆Tf listed in Table 7.3a and 7.3b are for the constituents
that must be taken into account to ensure an accuracy of 1 mm.

A Fortran program (DEHANTTIDEINEL.F) for computing the steps 1 and
2 corrections is available at <1>.

7.1.1.2 Permanent deformation The tidal model described above in principle con-
tains a time-independent part so that the coordinates obtained by taking
into account this model in the analysis will be “conventional tide free” val-
ues. (Note that they do not correspond to what would be observed in the
absence of tidal perturbation. See the discussion in Chapter 1.) This section
allows a user to compute “mean tide” coordinates from “conventional tide
free” coordinates.

Specifically, the degree 2 zonal tide generating potential includes a spectral
component of zero frequency and amplitude H0 = −0.31460 m, and its
effect enters the tidal displacement model through the time-independent
component of expression (7.5). Evaluation of this component may be done
using Equations (7.1a) and (7.2) with Hf = H0, θf = 0, and with the same
nominal values for the Love number parameters as were used in Step 1:
h2 = 0.6078, l2 = 0.0847 along with h(2) = −0.0006 and l(2) = 0.0002. One
finds the radial component of the permanent displacement according to (7.5)
to be

[−0.1206 + 0.0001P2(sinφ)]P2(sinφ) (7.14a)

in meters, and the transverse component to be

[−0.0252− 0.0001P2(sinφ)] sin 2φ (7.14b)

in meters northwards, where P2(sinφ) = (3 sin2 φ− 1)/2.

These are the components of the vector to be added to the “conventional tide
free” computed tide-corrected position to obtain the “mean tide” position.
The radial component of this restitution to obtain the “mean tide” value
amounts to about −12 cm at the poles and about +6 cm at the equator.

7.1.2 Local site displacement due to ocean loading

Ocean tides cause a temporal variation of the ocean mass distribution and the
associated load on the crust and produce time-varying deformations of the Earth
that can reach 100 mm. The modeling of the associated site displacement is dealt
with in this section.

Note on motion of the center of mass of the solid Earth

When the solid Earth together with the fluid masses are considered as a system
without any external forces acting upon it, the position of the common center
of mass remains fixed in space. When a phenomenon, such as the ocean tides,

1ftp://tai.bipm.org/iers/conv2010/chapter7/
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causes displacements of fluid masses, the center of mass of the fluid masses moves
periodically and must be compensated by an opposite motion of the center of
mass of the solid Earth. The stations, being fixed to the solid Earth, are subject
to this counter-motion.

For observing techniques that rely upon the dynamical motion of satellites, which
respond to the center of mass of the total Earth system, the modeled motions
of crust-fixed stations should include the “geocenter motion” contributions that
counterbalance the effects of the fluid components. For other observing tech-
niques, such as VLBI, neglect of geocenter motion should have no observable
consequences.

Models for ocean tidal loading

The tide generating potential due to the gravitational attraction of the Moon
and the Sun can be described by an expansion into a set of tidal harmonics
(e.g. Hartmann and Wenzel, 1995; Tamura, 1987; Cartwright and Tayler, 1971;
Cartwright and Edden, 1973). The response of the oceans, unlike for the solid
Earth, is strongly dependent on local and regional conditions that affect fluid flow.
Closed-form analytical expressions are not adequate to describe the ocean tidal
response globally. Instead, gridded formulations are needed. Table 7.4 lists the
leading global ocean tidal models that have been developed since Schwiderski and
Szeto (1981). Most modern models assimilate sea surface height measurements
made by altimetry satellites.

The crustal loading at a particular location due to a given tidal harmonic is com-
puted by integrating the tide height with a weighting function (Green’s function,
see Farrell, 1972), carrying the integration over all the ocean masses. The total
loading may be obtained by summing the effect of all harmonics. In practice, the
three-dimensional site displacements due to ocean tidal loading are computed us-
ing the following scheme. Let ∆c denote a displacement component (radial, west,
south) at a particular site at time t. ∆c is obtained as

∆c =
∑
j

Acj cos(χj(t)− φcj), (7.15)

where the summation is carried out for a set of tidal constituents. The ampli-
tudes Acj and phases φcj describe the loading response for the chosen site. The
astronomical argument χj(t) for the 11 main tides can be computed with the
subroutine ARG2.F, which can be obtained at <1>.

Conventionally, only a discrete set of harmonics in the long-period (order m = 0),
diurnal (m = 1) and semidiurnal (m = 2) bands are usually considered explic-
itly. The 11 main tides considered are the semidiurnal waves M2, S2, N2,K2, the
diurnal waves K1, O1, P1, Q1, and the long-period waves Mf ,Mm, and Ssa. The
site-dependent amplitudes Acj and phases φcj for these 11 tides are obtained as
described in the next sub-section. Amplitudes and phases for other tidal con-
stituents can be obtained from those of the 11 main tides by a variety of approxi-
mation schemes. For instance, if one wishes to include the effect of sidelobes of the
main tides generated by modulation with the 18.6-year lunar node, then suitable
adjustments in the 11 amplitudes and phases can be applied so that

∆c =

11∑
k=1

fkAck cos(χk(t) + uk − φck), (7.16)

where fk and uk depend on the longitude of the lunar node. See Scherneck (1999)
for the expression of these arguments.

In more complete methods, the lesser tides are handled by interpolation of the ad-
mittances using some full tidal potential development (e.g. Hartmann and Wenzel,
1995). One of these methods has been chosen as the conventional IERS method,
and has been implemented in a subroutine that is recommended as a conventional
computation of the loading displacement (see sub-section “Conventional routine
to compute the ocean loading displacement” below).
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Note that complete neglect of the minor tides and nodal modulations, using (7.15)
with only the 11 main tides, is not recommended and may lead to errors of several
mm, up to 5 mm rms at high latitudes (Hugentobler, 2006).

Additional contributions to ocean-induced displacement arise from the frequency
dependence of the load Love numbers due to the Nearly Diurnal Free Wobble in
the diurnal tidal band. The effect of this dependence has been taken into account,
following Wahr and Sasao (1981), by incrementing the body tide Love numbers as
explained in Section 7.1.1.

Site-dependent tidal coefficients

For a given site, the amplitudes Acj and phases φcj , 1 ≤ j ≤ 11, for the 11 main
tides may be obtained electronically from the ocean loading service site at <2>;
see Scherneck (1991). They are provided in either the so-called BLQ format or
in the HARPOS format. An example for the BLQ format is given in Table 7.5.
Note that tangential displacements are to be taken positive in west and south
directions. The service allows coefficients to be computed selectably from any of
eighteen ocean tide models; see Table 7.4.

The accuracy of the ocean tide loading values depends on the errors in the ocean
tide models, the errors in the Green’s function, the coastline representation and
the numerical scheme of the loading computation itself. To have a correct rep-
resentation of the water areas one normally uses a high resolution coastline of
around 600 m to 2 km. Note that still some problems exist near Antarctica where
one should use the real land coastline instead of the ice shelve edges. Different
elastic Earth models produce different Green’s functions but their differences are
small, less than 2%. Most numerical schemes to compute the loading are good to
about 2-5%. Currently, the largest contributor to the uncertainty in the loading
value are the errors in the ocean tide models. Therefore it is recommended to
use the most recent ocean tide models (TPXO7.2, see <3> for a solution derived
using tide gauge and TOPEX/Poseidon data; FES2004 for a hydrodynamic solu-
tion with altimetry data). However, older models might sometimes be preferred
for internal consistency. Since many space geodesy stations are inland or near
coasts, the accuracy of the tide models in the shelf areas is more crucial than in
the open sea. Load convolution adopts land-sea masking according to the high
resolution coastlines dataset included in the Generic Mapping Tools (GMT, Wes-
sel and Smith, 1998). Ocean tide mass budgets have been constrained using a
uniform co-oscillation oceanic layer. The integrating loading kernel employs a
disk-generating Green’s function method (Farrell, 1972; Zschau, 1983; Scherneck,
1990).

When generating tables of amplitudes and phases using the ocean loading service,
one has to answer the question “Do you want to correct your loading values for
the [geocenter] motion?”

Answering “No” means that the coefficients do not include the large-scale effect
of the geocenter motion caused by the ocean tide. This is appropriate for station
coordinates given in a “crust-fixed” frame that is not sensitive to the Earth’s
center of mass.

Answering “Yes” means that the coefficients include the large-scale effect of the
geocenter motion caused by the ocean tide. This is consistent with data analyses
that realize a near-instantaneous “center of mass” frame using observations of
satellite dynamics.

Conventional routine to compute the ocean loading displacement

D. Agnew has provided a Fortran program (HARDISP.F) to compute the ocean
tide loading displacements for a site, given the amplitudes Acj and phases φcj , 1 ≤
j ≤ 11, as generated by the Bos-Scherneck website (in BLQ format, see above).
The implementation considers a total of 342 constituent tides whose amplitudes
and phases are found by spline interpolation of the tidal admittances based on
the 11 main tides. Tests have been carried out showing that differences with an

2http://froste.oso.chalmers.se/loading
3http://volkov.oce.orst.edu/tides/TPXO7.2.html
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Table 7.4: Ocean tide models available at the automatic loading service.

Model code Reference Input Resolution

Schwiderski Schwiderski (1980) Tide gauge 1◦ × 1◦

CSR3.0, CSR4.0 Eanes (1994) TOPEX/Poseidon altim. 1◦ × 1◦

Eanes and Bettadpur (1995) T/P + Le Provost loading 0.5◦ × 0.5◦

TPXO5 Egbert et al. (1994) inverse hydrodyn. solution
from T/P altim. 256 × 512

TPXO6.2 Egbert et al. (2002), see <3> idem 0.25◦ × 0.25◦

TPXO7.0, TPXO7.1 idem idem idem
FES94.1 Le Provost et al. (1994) numerical model 0.5◦ × 0.5◦

FES95.2 Le Provost et al. (1998) num. model + assim. altim. 0.5◦ × 0.5◦

FES98 Lefèvre et al. (2000) num. model + assim. tide gauges 0.25◦ × 0.25◦

FES99 Lefèvre et al. (2002) numerical model + assim. 0.25◦ × 0.25◦

tide gauges and altim.
FES2004 Letellier (2004) numerical model 0.125◦ × 0.125◦

GOT99.2b, GOT00.2 Ray (1999) T/P 0.5◦ × 0.5◦

GOT4.7 idem idem idem
EOT08a Savcenko et al. (2008) Multi-mission altimetry 0.125◦ × 0.125◦

AG06a Andersen (2006) Multi-mission altimetry 0.5◦ × 0.5◦

NAO.99b Matsumoto et al. (2000) num. + T/P assim. 0.5◦ × 0.5◦

Table 7.5: Sample of an ocean loading table file in BLQ format. Each site record shows a header with
information on the ocean tide model and the site name and geographic coordinates. First
three rows of numbers designate amplitudes (meter), radial, west, south, followed by three
lines with the corresponding phase values (degrees).

Columns designate partial tides M2, S2, N2,K2,K1, O1, P1, Q1,Mf ,Mm, and Ssa.
$$

ONSALA
$$ CSR4.0 f PP ID: 2009-06-25 20:02:03
$$ Computed by OLMPP by H G Scherneck, Onsala Space Observatory, 2009
$$ Onsala, lon/lat: 11.9264 57.3958
.00352 .00123 .00080 .00032 .00187 .00112 .00063 .00003 .00082 .00044 .00037
.00144 .00035 .00035 .00008 .00053 .00049 .00018 .00009 .00012 .00005 .00006
.00086 .00023 .00023 .00006 .00029 .00028 .00010 .00007 .00004 .00002 .00001

-64.7 -52.0 -96.2 -55.2 -58.8 -151.4 -65.6 -138.1 8.4 5.2 2.1
85.5 114.5 56.5 113.6 99.4 19.1 94.1 -10.4 -167.4 -170.0 -177.7

109.5 147.0 92.7 148.8 50.5 -55.1 36.4 -170.4 -15.0 2.3 5.2

earlier version of HARDISP.F with 141 constituent tides are of order 0.1 mm rms.
Comparisons with the ETERNA software of Wenzel (1996) have been carried
out by M. Bos (2005), who concludes that the routine is precise to about 1%.
Uncertainties in the ocean models are generally larger. The code for the routine
can be obtained at <1>.

Center of mass correction

If necessary, the crust-frame translation (geocenter motion) due to the ocean tidal
mass, dX(t), dY (t), and dZ(t), may be computed according to the method given
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by Scherneck at <4>, e.g. for dX(t) as

dX(t) =

11∑
k=1

Xin(k) cos(χk(t)) +Xcr(k) sin(χk(t)) (7.17)

where the in-phase (in) and cross-phase (cr) amplitudes (in meters) are tabulated
for the various ocean models. Similarly for dY (t) and dZ(t). This correction
should be applied, for instance, in the transformation of GPS orbits from the
center-of-mass to the crust-fixed frame expected in the sp3 orbit format

Xcrust−fixed = Xcenter−of−mass − dX, (7.18)

i.e. the translation vector should be substracted when going from center-of-mass
to sp3.

7.1.3 S1-S2 atmospheric pressure loading

The diurnal heating of the atmosphere causes surface pressure oscillations at diur-
nal S1, semidiurnal S2, and higher harmonics. These “atmospheric tides” induce
periodic motions of the Earth’s surface (Petrov and Boy, 2004). Previously, the
S1 and S2 loading effects have not been included in the station motion model.
Figure 7.1 shows the amplitude and phase of the predicted vertical deformation of
the S1 and S2 tides derived from the model of Ray and Ponte (2003) using elastic
Green’s functions (Farrell, 1972) in the center of mass of Earth + fluid masses
(CM) frame. Horizontal deformations (not shown) are a factor of 10 smaller in
amplitude. The amplitude of the vertical deformation is equal to that of some
ocean tide loading effects and should, therefore, be considered in the station mo-
tion model. Being close to the orbital period of the GPS satellites, modeling of the
S2 effect is especially important for this technique in order to minimize aliasing
(Tregoning and Watson, 2009).

The conventional recommendation is to calculate the station displacement using
the Ray and Ponte (2003) S2 and S1 tidal model, hereafter referred to as RP03.

Tidal model

The S1 and S2 RP03 tidal model is derived from the European Centre for Medium-
Range Weather Forecasts (ECMWF) operational global surface pressure fields,
using a procedure outlined by van den Dool et al. (1997). The S2 model has been
tested by comparison against 428 barometer stations (Ray and Ponte, 2003). It
is expected that National Centers for Environmental Prediction (NCEP) opera-
tional data provide equivalent results (van den Dool, 2004). Similar comparisons
were found for the S1 models, although those tests were far less extensive. The
barometer stations have also revealed small phase errors in the derived tidal fields.
The origin of these errors is not understood, but the models can be corrected a
posteriori. The RP03 phases have been adjusted by 20 minutes to correct for this
error.

Calculation of loading effects

We use elastic Green’s functions (Farrell, 1972) derived in the various reference
frames to generate the predicted in-phase and out-of-phase surface displacement
from RP03. The spatial resolution of the input surface pressure grid is 1.125◦.

Elastic Green’s functions (versus frequency-dependent Green’s functions) are suf-
ficient for this computation. By considering changes in viscoelasticity, Francis
and Mazzega (1990) demonstrated that the amplitude of the M2 ocean tidal ra-
dial surface displacement can vary by 1.5% and the phase by 3%, i.e. a negligible
amount in comparison to uncertainties in the ocean tide model itself. A 1.5%
effect on the S2 radial displacement is 0.05 mm in amplitude which is certainly
less than the uncertainty in the S1 and S2 pressure models and can be ignored.

4http://froste.oso.chalmers.se/loading/cmc.html
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Figure 7.1: Amplitude (in mm) and phase (in degrees) of the predicted
vertical surface displacement from the S1 and S2 atmospheric tides from the
model by Ray and Ponte (2003).

In addition, differences in predicted displacements derived from different Green’s
functions are on the order of 0.1 mm rms, so it seems unnecessary to generate
corrections using Green’s functions derived for different Earth models. The three-
dimensional surface displacements are determined by assuming that the oceans
respond as the solid Earth to the load, i.e. no inverted barometer. At these
frequencies, the ocean does not have time to achieve equilibrium. Furthermore, it
should be noted that the ocean’s response to these atmospheric tides is already
modeled separately through the site displacements due to ocean tidal loading
described in Section 7.1.2.

The phase convention follows that of RP03. At any geographic location, at any
time, the tidal deformation, expressed in terms of up, east and north components,
is the sum of d(u, e, n)S1 and d(u, e, n)S2 defined as

d(u, e, n)S1 = Ad1(u, e, n) ∗ cos(ω1T ) +Bd1(u, e, n) ∗ sin(ω1T ) (7.19a)

d(u, e, n)S2 = Ad2(u, e, n) ∗ cos(ω2T ) +Bd2(u, e, n) ∗ sin(ω2T ), (7.19b)
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where Ad1, Bd1, Ad2, Bd2 are the surface displacement coefficients expressed in the
same length unit as the deformation components, T is UT1 in days and ω1 and
ω2 are the frequencies of the S1 and S2 atmospheric tides, e.g. ω1 = 1 cycle/day
and ω2 = 2 cycles/day.

The surface displacement coefficients Ad1, Bd1, Ad2, Bd2 are determined for each
site by performing a global convolution sum of the Green’s functions with the
cosS1 , sinS1 , cosS2 , sinS2 pressure mass coefficients. Gridded values of the three-
dimensional predicted surface displacements from the RP03 model may be found
at <5>. Corrections for the vertical surface displacement are usually sufficient,
whereas estimates of horizontal effects are provided for completeness. The grids
are provided for the two fundamental reference frames used for geodetic data
analysis: center of solid Earth (CE) and center of mass of Earth + atmosphere +
ocean + water storage (CM). In most applications, e.g. corrections of satellite-
based techniques at the observation level, the CM frame is most appropriate. A
description of the grid indexing as well as a program grdintrp.f for interpolating
the grids are also available at <5>.

Center of mass correction

As with ocean tidal loading (see preceding section), it may be necessary to com-
pute the crust-frame translation (geocenter motion) due to the atmospheric tidal
mass. dX(t), dY (t), and dZ(t) may be computed according to the method given
by Scherneck at <6>, e.g. for dX(t) as

dX(t) = A1cos(ω1T ) +B1sin(ω1T ) +A2cos(ω2T ) +B2sin(ω2T ) (7.20)

where, as above, ω1 = 1 cycle/day and ω2 = 2 cycles/day and A1, B1, A2, B2 are
the amplitudes of the in-phase and out-of-phase components of the atmospheric
tides (in meters) and are given in Table 7.6 and in the file com.dat available at
<5>. As with ocean tidal loading (see preceding section), this correction should
be applied in transforming GPS orbits from the center-of-mass to the crust-fixed
frame expected in the sp3 orbit format.

Table 7.6: Coefficients for the center of mass correction of the S1-S2 atmospheric pressure loading

A1 B1 A2 B2

dX 2.1188E-04 -7.6861E-04 1.4472E-04 -1.7844E-04
dY -7.2766E-04 -2.3582E-04 -3.2691E-04 -1.5878E-04
dZ -1.2176E-05 3.2243E-05 -9.6271E-05 1.6976E-05

7.1.4 Rotational deformation due to polar motion

The variation of station coordinates caused by the pole tide can amount to a
couple of centimeters and needs to be taken into account.

Let us choose x̂, ŷ and ẑ as a terrestrial system of reference. The ẑ-axis is oriented
along the Earth’s mean rotation axis, the x̂-axis points in the direction of the
adopted origin of longitude and the ŷ-axis is orthogonal to the x̂- and ẑ- axes and
in the plane of the 90◦ E meridian.

The centrifugal potential caused by the Earth’s rotation is

V =
1

2

[
r2|~Ω|2 − (~r · ~Ω)2

]
, (7.21)

where ~Ω = Ω(m1 x̂ + m2 ŷ + (1 + m3) ẑ). Ω is the mean angular velocity of the
Earth’s rotation; m1, m2 describe the time-dependent offset of the instantaneous
rotation pole from the mean, and m3, the fractional variation in the rotation rate;
r is the geocentric distance to the station.

5http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html
6http://froste.oso.chalmers.se/loading/cmc.html
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Neglecting the variations in m3 which induce displacements that are below the
mm level, the m1 and m2 terms give a first order perturbation in the potential V
(Wahr, 1985)

∆V (r, θ, λ) = −Ω2r2

2
sin 2θ (m1 cosλ+m2 sinλ). (7.22)

The radial displacement Sr and the horizontal displacements Sθ and Sλ (positive
upwards, south and east, respectively, in a horizon system at the station) due to
∆V are obtained using the formulation of tidal Love numbers h2 and `2 (Munk
and MacDonald, 1960):

Sr = h2
∆V

g
, Sθ =

`2
g
∂θ∆V, Sλ =

`2
g

1

sin θ
∂λ∆V. (7.23)

The position of the Earth’s mean rotation pole has a secular variation, and its
coordinates in the Terrestrial Reference Frame discussed in Chapter 4 are given, in
terms of the polar motion variables (xp, yp) defined in Chapter 5, by appropriate
running averages x̄p and −ȳp. Then

m1 = xp − x̄p, m2 = −(yp − ȳp). (7.24)

For the most accurate results, an estimate of the wander of the mean pole should
be used, that represents the secular variation to within about 10 mas. This ensures
that the geopotential field is aligned to the long term mean pole (see Section 6.1)
within the present geodetic accuracy. This is no longer the case (Ries, 2010)
with the conventional mean pole of the IERS Conventions (2003) which is to be
replaced with the model given below. In the future, the IERS conventional mean
pole will be revised as needed with sufficient advance notice. The present version
(2010) of the conventional mean pole is composed of a cubic model valid over the
period 1976.0–2010.0 and a linear model for extrapolation after 2010.0, ensuring
continuity and derivability at 2010.0. The cubic model was derived by the IERS
Earth Orientation Centre from a fit over the period 1976.0–2010.0 of the data in
<7>. This data itself was obtained (Gambis, 2010) by filtering periodic terms
in the EOP(IERS) C01 series <8> with an X11 Census process (Shiskin et al.,
1967). The IERS (2010) mean pole model reads

x̄p(t) =

3∑
i=0

(t− t0)i × x̄ip, ȳp(t) =

3∑
i=0

(t− t0)i × ȳip, (7.25)

where t0 is 2000.0 <9> and the coefficients x̄ip and ȳip are given in Table 7.7.

Table 7.7: Coefficients of the IERS (2010) mean pole model

Until 2010.0 After 2010.0

Degree i x̄ip / mas yr−i ȳip / mas yr−i x̄ip / mas yr−i ȳip / mas yr−i

0 55.974 346.346 23.513 358.891
1 1.8243 1.7896 7.6141 -0.6287
2 0.18413 -0.10729 0.0 0.0
3 0.007024 -0.000908 0.0 0.0

7ftp://tai.bipm.org/iers/conv2010/chapter7/annual.pole
8ftp://hpiers.obspm.fr/iers/eop/eopc01
9Note that the original data used to generate the linear model used Besselian epochs. Thus, strictly speaking, the

time argument t in (7.25) is also a Besselian epoch. However, for all practical purposes, a Julian epoch may be used for
t.
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Using Love number values appropriate to the frequency of the pole tide (h2 =
0.6207, l2 = 0.0836) and r = a = 6.378× 106 m, one finds

Sr = −33 sin 2θ (m1 cosλ+m2 sinλ) inmm,

Sθ = −9 cos 2θ (m1 cosλ+m2 sinλ) inmm,

Sλ = 9 cos θ (m1 sinλ−m2 cosλ) inmm,

(7.26)

with m1 and m2 given in arcseconds. Note that the values of the Love numbers
include the anelastic contributions to the real part, which induce a contribution
to the displacement of order 1 mm, but do not include the contributions to the
imaginary part, whose effects are about 5 times smaller. Taking into account
that m1 and m2 vary, at most, by 0.8 as, the maximum radial displacement is
approximately 25 mm, and the maximum horizontal displacement is about 7 mm.

If X, Y , and Z are Cartesian coordinates of a station in a right-handed equatorial
coordinate system, the changes in them due to polar motion are (note that the
order of components is different in Equations (7.26) and (7.27))

[dX, dY, dZ]T = RT [Sθ, Sλ, Sr]
T , (7.27)

where

R =


cos θ cosλ cos θ sinλ − sin θ

− sinλ cosλ 0

sin θ cosλ sin θ sinλ cos θ

 . (7.28)

7.1.5 Ocean pole tide loading

The ocean pole tide is generated by the centrifugal effect of polar motion on the
oceans. This centrifugal effect is defined in Equation (6.10) of Section 6.2. Polar
motion is dominated by the 14-month Chandler wobble and annual variations. At
these long periods, the ocean pole tide is expected to have an equilibrium response,
where the displaced ocean surface is in equilibrium with the forcing equipotential
surface.

Desai (2002) presents a self-consistent equilibrium model of the ocean pole tide.
This model accounts for continental boundaries, mass conservation over the oceans,
self-gravitation, and loading of the ocean floor. Using this model, the load of the
ocean pole tide produces the following deformation vector at any point on the sur-
face of the Earth with latitude φ and longitude λ. The load deformation vector
is expressed here in terms of radial, north and east components, ur, un, and ue,
respectively, and is a function of the wobble parameters (m1,m2).

ur(φ, λ)

un(φ, λ)

ue(φ, λ)

 = K

(m1γ
R
2 +m2γ

I
2 )


uRr (φ, λ)

uRn (φ, λ)

uRe (φ, λ)

+ (m2γ
R
2 −m1γ

I
2 )


uIr(φ, λ)

uIn(φ, λ)

uIe(φ, λ)


 (7.29)

where

K =
4πGaEρwHp

3ge

Hp =

(
8π

15

)1/2
Ω2a4

E

GM

and
Ω, aE , GM , ge, and G are defined in Chapter 1,
ρw = density of sea water = 1025 kg m−3,
γ = (1 + k2−h2) = γR2 + iγI2 = 0.6870 + 0.0036i (Values of k2 and h2 appropriate
for the pole tide are as given in Sections 6.2 and 7.1.4),
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Figure 7.2: Loading from ocean pole tide: Amplitude as a function of the
amplitude of wobble variable.

(m1,m2) are the wobble parameters. Refer to Section 7.1.4 for the relationship
between the wobble variables (m1,m2) and the polar motion variables (xp, yp).
uRr (φ, λ), uRn (φ, λ), uRe (φ, λ) are the real part of the ocean pole load tide coeffi-
cients.
uIr(φ, λ), uIn(φ, λ), uIe(φ, λ) are the imaginary part of the ocean pole load tide
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coefficients.

Maps of the required ocean pole load tide coefficients are available on an equally
spaced 0.5 by 0.5 degree global grid at <10>. These coefficients provide the surface
deformations with respect to the instantaneous center of mass of the deformed
Earth including the mass of the loading ocean pole tide.

The amplitude of this loading deformation is shown in Figure 7.2 in mm per arc-
second as a function of the amplitude m of the wobble components (m1, m2).
Given that the amplitude of the wobble variable is typically of order 0.3 arcsec-
onds, the load deformation is typically no larger than about (1.8, 0.5, 0.5) mm in
(radial, north, east) component, but it may occasionally be larger.

7.2 Models for other non-conventional displacement of reference markers
on the crust

It is envisioned that this section describes methods of modeling non-tidal dis-
placements associated with changing environmental loads, e.g. from atmosphere,
ocean and hydrology. For this purpose, models should be made available to the
user community through the IERS Global Geophysical Fluid Center and its spe-
cial bureaux, together with all necessary supporting information, implementation
documentation, and software.

At the time of this registered edition of the IERS Conventions, it is recommended
not to include such modeling in operational solutions that support products and
services of the IERS. Nevertheless, the non-tidal loading effects can be considered
in other studies, and this section will be updated as adopted models become
available.

7.3 Models for the displacement of reference points of instruments

This section lists effects which are to be considered when relating the reference
point of an instrument used in a given technique to a marker that may be used
as a reference by other techniques. Typical examples are antenna phase center
offsets. These effects are technique-dependent and the conventional models for
these effects are kept and updated by the technique services participating to the
IERS: The IVS <11> for very long baseline interferometry, the ILRS <12> for
satellite laser ranging, the IGS <13> for global navigation satellite systems and
the IDS <14> for DORIS. This section provides a short description of these models
and directs the user to the original source of information.

7.3.1 Models common to several techniques

As some of the effects depend on local environmental conditions, conventional
models for these effects need to be based on a reference value for local temperature.
A conventional model to determine reference temperature is given below.

Reference temperature

If necessary, it is recommended to determine the reference temperature values
with the model GPT (Boehm et al., 2007) which is based on a spherical harmonic
expansion of degree and order 9 with an annual periodicity, and is provided as
a Fortran routine, GPT.F, at <15> and <16>. The arguments of the routine are
described in its header. The model assumes a yearly signature and no secular
variation, so should not impact secular terms in the modeled geodetic data. If

10ftp://tai.bipm.org/iers/conv2010/chapter7/opoleloadcoefcmcor.txt.gz
11http://ivscc.gsfc.nasa.gov/
12http://ilrs.gsfc.nasa.gov/
13http://igs.org/
14http://ids.cls.fr/
15ftp://tai.bipm.org/iers/conv2010/chapter9
16http://www.hg.tuwien.ac.at/∼ecmwf1

118

ftp://tai.bipm.org/iers/conv2010/chapter7/opoleloadcoefcmcor.txt.gz
http://ivscc.gsfc.nasa.gov/
http://ilrs.gsfc.nasa.gov/
http://igs.org/
http://ids.cls.fr/
ftp://tai.bipm.org/iers/conv2010/chapter9
http://www.hg.tuwien.ac.at/~ecmwf1


References

N
o

.
3

6IERS
Technical

Note

only a constant reference temperature is needed (no yearly term), the model value
at the 119th day of year, 07:30 UTC (e.g. MJD 44357.3125) should be used.

7.3.2 Very long baseline interferometry

Thermal expansion

VLBI antennas are subject to structural deformations due to temperature varia-
tions that can cause variations in the VLBI delay exceeding 10 ps. Correspond-
ingly, the coordinates of the reference point may vary by several mm. For this
reason the IVS has developed a model for VLBI antenna thermal deformation
(Nothnagel, 2008) that is to be used in its routine product generation. The con-
ventional model for VLBI antenna thermal deformation may be found at <17>.

7.3.3 Global navigation satellite systems

Antenna phase center offsets and variations The exact phase center posi-
tion of the transmitting as well as of the receiving antenna depends on the line
of sight from the satellite to the receiver. This anisotropy is modeled by a phase
center offset from a physical reference point to the mean electrical phase cen-
ter together with its corresponding elevation- and azimuth-dependent variations.
Since November 2006, the IGS applies consistent absolute phase center correc-
tions for satellite and receiver antennas (Schmid et al., 2007). The current model
is available at <18>.

References

Andersen, O. B., 2006,
see http://www.spacecenter.dk/data/global-ocean-tide-model-1/.

Boehm, J., Heinkelmann, R., and Schuh, H., 2007, “Short Note: A global model
of pressure and temperature for geodetic applications,” J. Geod., 81(10),
pp. 679–683, doi:10.1007/s00190-007-0135-3.

Bos, M. S., 2005, personal communication.

Cartwright, D. E. and Tayler, R. J., 1971, “New computations of the tide-gene-
rating potential,” Geophys. J. Roy. astr. Soc., 23(1), pp. 45–74.

Cartwright, D. E. and Edden, A. C., 1973, “Corrected tables of tidal harmon-
ics,” Geophys. J. Roy. astr. Soc., 33(3), pp. 253–264, doi:10.1111/j.1365-
246X.1973.tb03420.x.

Chelton, D. B. and Enfield, D. B., 1986, “Ocean signals in tide gauge records,”
J. Geophys. Res., 91(B9), pp. 9081–9098, doi: 10.1029/JB091iB09p09081

Desai, S. D., 2002, “Observing the pole tide with satellite altimetry,” J. Geophys.
Res., 107(C11), 3186, doi:10.1029/2001JC001224.

Doodson, A. T., 1928, “The Analysis of Tidal Observations,” Phil. Trans. Roy.
Soc. Lond., 227, pp. 223–279, http://www.jstor.org/stable/91217

Eanes, R. J., 1994, “Diurnal and semidiurnal tides from TOPEX/Poseidon al-
timetry,” paper G32B-6, presented at the Spring Meeting of the AGU, Bal-
timore, MD, EOS Trans AGU, 75, p. 108.

Eanes R. J. and Bettadpur, S., 1995, “The CSR 3.0 global ocean tide model,”
Technical Memorandum CSR-TM-95-06, Center for Space Research, Univer-
sity of Texas, Austin, TX.

Egbert, G. D., Bennett, A. F., and Foreman, M. G. G., 1994, “TOPEX/
Poseidon tides estimated using a global inverse model,” J. Geophys. Res.,
99(C12), pp. 24821–24852, doi: 10.1029/94JC01894

Egbert, G. D., Erofeeva, S.Y., 2002, “Efficient inverse modeling of barotropic
ocean tides,” J. Atmos. Ocean. Technol., 19(2), pp. 183–204.

17http://vlbi.geod.uni-bonn.de/IVS-AC/Conventions/Chapter1.html
18ftp://igs.org/igscb/station/general/igs05.atx

119

http://www.spacecenter.dk/data/global-ocean-tide-model-1/
http://www.jstor.org/stable/91217
http://vlbi.geod.uni-bonn.de/IVS-AC/Conventions/Chapter1.html
ftp://igs.org/igscb/station/general/igs05.atx


N
o

.
3

6 IERS
Technical
Note

7 Displacement of reference points

Farrell, W. E., 1972, “Deformation of the Earth by surface loads,” Rev. Geophys.
Space Phys., 10(3), pp. 761–797, doi: 10.1029/RG010i003p00761.

Francis, O. and P. Mazzega, 1990, “Global charts of ocean tide loading effects,”
J. Geophys Res., 95(C7), pp. 11411–11424, doi:10.1029/JC095iC07p11411.

Gambis, D., personal communication, 2010.

Haas, R., 1996, “Untersuchungen zu Erddeformationsmodellen für die Auswer-
tung von geodätischen VLBI-Messungen”, PhD Thesis, Deutsche Geodätische
Kommission, Reihe C, Heft Nr. 466, 103 pp.

Haas, R., Scherneck, H.-G., and Schuh, H., 1997, “Atmospheric loading correc-
tions in Geodetic VLBI and determination of atmospheric loading coeffi-
cients,” in Proc. of the 12 Working Meeting on European VLBI for Geodesy
and Astronomy, Pettersen, B.R. (ed.), Honefoss, Norway, 1997, pp. 122–132.

Hartmann, T. and Wenzel, H.-G., 1995, “The HW95 tidal potential catalogue,”
Geophys. Res. Lett., 22(24), pp. 3553–3556, doi: 1029/95GL03324

Hugentobler, U., 2006, personal communication.

Le Provost, C., Genco, M. L., Lyard, F., Vincent, P., and Canceil, P., 1994,
“Spectroscopy of the world ocean tides from a finite element hydrodynamic
model,” J. Geophys. Res., 99(C12), pp. 24777–24797,
doi: 10.1029/94JC01381

Le Provost, C., Lyard, F., Molines, J. M., Genco, M. L., and Rabilloud, F., 1998,
“A hydrodynamic ocean tide model improved by assimilating a satellite
altimeter-derived data set,” J. Geophys. Res., 103(C3), pp. 5513–5529,
doi: 10.1029/97JC01733
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8 Tidal variations in the Earth’s rotation

8.1 Effect of the tidal deformation (zonal tides) on Earth’s rotation

Periodic variations in UT1 due to tidal deformation of the polar moment of inertia
were first derived by Yoder et al. (1981) and included the tidal deformation (zonal
tides) of the Earth with a decoupled core, an elastic mantle and equilibrium
oceans. This model used effective Love numbers that differ from the bulk value
of 0.301 because of the oceans and the fluid core, producing different theoretical
values of the ratio k/C (defined as the quantity which scales the rotational series,
where k is that part of the Love number which causes the tidal variation in the
moment of inertia of the coupled mantle and oceans and C is the dimensionless
polar moment of inertia of the coupled values) for the fortnightly and monthly
terms. However, Yoder et al. (1981) recommend the value of 0.94 for k/C for
both cases.

Past versions of the IERS Conventions defined regularized UT11 as UT1 with the
effect of the corrected tides with periods less than 35 days removed and UT1S as
UT1 with the effects of all tidal constituents removed, including the long-period
tides (up to 18.6 years). However, the IERS Conventions recommend that only
UT1 and length of day (here noted ∆) be used in routine data exchange appli-
cations in order to avoid possible confusion regarding the exact implementation
of tidal models. In research applications, analysts must be careful to specify
unambiguously any tidal models used.

Table 8.1 provides corrections for the tidal variations in the Earth’s rotation with
periods from 5 days to 18.6 years. These corrections (δUT1, δ∆, δω) represent the
effect of tidal deformation on the physical variations in the rotation of the Earth
and are the sum of: (1) the Yoder et al. (1981) elastic body and equilibrium
ocean tide model assuming a value of 0.94 for k/C; (2) the in-phase and out-
of-phase components of the Wahr and Bergen (1986) inelastic body tide model
for the QMU Earth model of Sailor and Dziewonski (1978) assuming a frequency
dependence of (fm/f)α where α = 0.15, fm is the seismic frequency corresponding
to a period of 200 s, and f is the tidal frequency; and (3) the data assimilating
dynamic ocean tide model “A” of Kantha et al. (1998) from which the equilibrium
model of Yoder et al. (1981) was removed (see Gross (2009) for an evaluation of
these and other tide models). To obtain variations free from tidal effects, these
corrections should be subtracted from the observed UT1−UTC, length of day (∆)
and rotation velocity (ω). The difference between this newly recommended model
and that in the Conventions 2003 is mainly at the fortnightly tidal period where
the UT1 amplitude difference is approximately 6 µs. The total amplitude of the
fortnightly tide in UT1 is about 785 µs.

δUT1 =

62∑
i=1

Bi sin ξi + Ci cos ξi,

δ∆ =

62∑
i=1

B′i cos ξi + C′i sin ξi,

δω =

62∑
i=1

B′′i cos ξi + C′′i sin ξi,

ξi =

5∑
j=1

aijαj ,

Bi, Ci, B
′
i, C

′
i, B

′′
i , and C′′i are given in columns 7–12 respectively in Table 8.1. aij

are the integer multipliers of the αj for the ith tide given in the first five columns
of Table 8.1. The arguments αj (l, l′, F , D or Ω) are given in Section 5.7.2.

1UT1R was adopted at The Eighteenth General Assembly of the International Astronomical Union to be UT1 with
the short period tides removed, i.e., periods less than 35 days, and that these tabulations be based on Yoder et al. (1981).
See: Transactions of the International Astronomical Union, 1983, Proceedings of the Eighteenth General Assembly, Vol.
XVIIIB, 17–26 August, 1982, Patras, Greece, pp. 238–240.
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8 Tidal variations in the Earth’s rotation

The routine “RG ZONT2.F”, available from the IERS Conventions website <2>,
implements the model from Table 8.1.

In the past there has been some confusion over comparison of models appearing in
the IERS Conventions and the values published in the Yoder et al. (1981) paper.
J. Williams (2005, private communication) points out that there are four known
errors in the Yoder et al. (1981) table. (1) The amplitude of term 22 (14.73-day
period) should read −50 instead of 50. (2) The period of term 58 (1095.17-day
period) should read −1095.17 instead of 1095.17, (i.e. the motion is retrograde).
(3) The amplitude of term 59 (1305.47-day period) should read −448 instead of
−449. (4) The amplitude of term 60 (3232.85-day period) should read +43 instead
of −43.

To avoid confusion among possible tidal models, it is recommended that the terms
δUT1, δ∆, δω be followed by the model name in parenthesis, e.g. δUT1(Yoder et
al., 1981).

8.2 Diurnal and semi-diurnal variations due to ocean tides

The routine “ORTHO EOP.F”, available from the IERS Conventions website
< 3>, provides corrections for modeling the diurnal and sub-diurnal variations
in polar motion and UT1. It was provided by Eanes (2000) and based on Ray et
al. (1994). The difference with the older model of the Conventions (1996) can
exceed 100 microarcseconds for polar motion and 10 microseconds for UT1.

The model includes 71 tidal constituents with amplitudes on the order of tenths of
milliarcseconds in polar motion and tens of microseconds in UT1. The coefficients
of these terms have been derived by the IERS Earth Orientation Center from time
series of these variations determined from “ORTHO EOP.F”, and are reported in
Tables 8.2a and 8.2b for polar motion and in Tables 8.3a and 8.3b for UT1 and
length of day (LOD). Previous versions of Tables 8.3a and 8.3b provided LOD
with a resolution that was better than that for UT1. For consistency between the
two and between these tables and Table 5.1b in Chapter 5, one digit has been
removed for the LOD values in Tables 8.3a and 8.3b. Because these tables cannot
be found in the code of “ORTHO EOP.F”, the IERS Earth Orientation Center has
implemented them in the alternative software “interp.f” <3>. The two routines
agree at the level of a few microarcseconds in polar motion and a few tenths of a
microsecond in UT1.

8.3 Tidal variations in polar motion and polar motion excitation due to
long period ocean tides

Table 8.4 provides corrections for the tidal variations in polar motion and polar
motion excitation with periods from 9 days to 18.6 years in terms of the ampli-
tude A and phase φ of the prograde (subscript p) and retrograde (subscript r)
components defined for polar motion ~p(t) by:

~p(t) = px(t)− ipy(t) = Ape
iφpeiα(t) +Are

iφre−iα(t), (8.1)

and for polar motion excitation ~χ(t) ≡ ~p(t) +
i

σ0

d~p(t)

dt
by:

~χ(t) = χx(t) + iχy(t) = Ape
iφpeiα(t) +Are

iφre−iα(t) (8.2)

where by convention py(t) is defined to be positive toward 90◦W longitude, χy(t) is
defined to be positive toward 90◦E longitude, σ0 is the complex-valued frequency
of the Chandler wobble, and α(t) is the tidal argument, the expansion of which in
terms of (l, l′, F,D, and Ω) is given in Table 8.4. These corrections are from the
Dickman and Nam (1995) long-period spherical harmonic ocean tide model as re-
ported by Dickman and Gross (2010). To obtain variations free from tidal effects,

2ftp://tai.bipm.org/iers/conv2010/chapter8/
3ftp://hpiers.obspm.fr/eop-pc/models/interp.f
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the sum of these corrections should be subtracted from the observed polar motion
and polar motion excitation values. The effect on polar motion is largest for the
fortnightly tide. Empirical fits to polar motion data give (prograde, retrograde)
amplitudes of (69, 89) µas at Mf . The model yields (prograde, retrograde) polar
motion amplitudes of (66, 74) µas at Mf .

Table 8.1: Zonal tide terms. Columns headed by the titles δUT1, δ∆, and δω provide the regularized
forms of UT1, the duration of the day ∆, and the angular velocity of the Earth, ω. The
units are 10−4 s for UT1, 10−5 s for ∆, and 10−14 rad/s for ω. The column titled “Period”
provides the approximate value of the period with a positive or negative sign to indicate
a prograde or retrograde motion.

ARGUMENT PERIOD δUT1 δ∆ δω

l l′ F D Ω Days Bi Ci B′i C ′i B′′i C ′′i

1 0 2 2 2 5.64 -0.0235 0.0000 0.2617 0.0000 -0.2209 0.0000
2 0 2 0 1 6.85 -0.0404 0.0000 0.3706 0.0000 -0.3128 0.0000
2 0 2 0 2 6.86 -0.0987 0.0000 0.9041 0.0000 -0.7630 0.0000
0 0 2 2 1 7.09 -0.0508 0.0000 0.4499 0.0000 -0.3797 0.0000
0 0 2 2 2 7.10 -0.1231 0.0000 1.0904 0.0000 -0.9203 0.0000
1 0 2 0 0 9.11 -0.0385 0.0000 0.2659 0.0000 -0.2244 0.0000
1 0 2 0 1 9.12 -0.4108 0.0000 2.8298 0.0000 -2.3884 0.0000
1 0 2 0 2 9.13 -0.9926 0.0000 6.8291 0.0000 -5.7637 0.0000
3 0 0 0 0 9.18 -0.0179 0.0000 0.1222 0.0000 -0.1031 0.0000

-1 0 2 2 1 9.54 -0.0818 0.0000 0.5384 0.0000 -0.4544 0.0000
-1 0 2 2 2 9.56 -0.1974 0.0000 1.2978 0.0000 -1.0953 0.0000
1 0 0 2 0 9.61 -0.0761 0.0000 0.4976 0.0000 -0.4200 0.0000
2 0 2 -2 2 12.81 0.0216 0.0000 -0.1060 0.0000 0.0895 0.0000
0 1 2 0 2 13.17 0.0254 0.0000 -0.1211 0.0000 0.1022 0.0000
0 0 2 0 0 13.61 -0.2989 0.0000 1.3804 0.0000 -1.1650 0.0000
0 0 2 0 1 13.63 -3.1873 0.2010 14.6890 0.9266 -12.3974 -0.7820
0 0 2 0 2 13.66 -7.8468 0.5320 36.0910 2.4469 -30.4606 -2.0652
2 0 0 0 -1 13.75 0.0216 0.0000 -0.0988 0.0000 0.0834 0.0000
2 0 0 0 0 13.78 -0.3384 0.0000 1.5433 0.0000 -1.3025 0.0000
2 0 0 0 1 13.81 0.0179 0.0000 -0.0813 0.0000 0.0686 0.0000
0 -1 2 0 2 14.19 -0.0244 0.0000 0.1082 0.0000 -0.0913 0.0000
0 0 0 2 -1 14.73 0.0470 0.0000 -0.2004 0.0000 0.1692 0.0000
0 0 0 2 0 14.77 -0.7341 0.0000 3.1240 0.0000 -2.6367 0.0000
0 0 0 2 1 14.80 -0.0526 0.0000 0.2235 0.0000 -0.1886 0.0000
0 -1 0 2 0 15.39 -0.0508 0.0000 0.2073 0.0000 -0.1749 0.0000
1 0 2 -2 1 23.86 0.0498 0.0000 -0.1312 0.0000 0.1107 0.0000
1 0 2 -2 2 23.94 0.1006 0.0000 -0.2640 0.0000 0.2228 0.0000
1 1 0 0 0 25.62 0.0395 0.0000 -0.0968 0.0000 0.0817 0.0000

-1 0 2 0 0 26.88 0.0470 0.0000 -0.1099 0.0000 0.0927 0.0000
-1 0 2 0 1 26.98 0.1767 0.0000 -0.4115 0.0000 0.3473 0.0000
-1 0 2 0 2 27.09 0.4352 0.0000 -1.0093 0.0000 0.8519 0.0000

(continued on next page)
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(Table 8.1: continued)

1 0 0 0 -1 27.44 0.5339 0.0000 -1.2224 0.0000 1.0317 0.0000
1 0 0 0 0 27.56 -8.4046 0.2500 19.1647 0.5701 -16.1749 -0.4811
1 0 0 0 1 27.67 0.5443 0.0000 -1.2360 0.0000 1.0432 0.0000
0 0 0 1 0 29.53 0.0470 0.0000 -0.1000 0.0000 0.0844 0.0000
1 -1 0 0 0 29.80 -0.0555 0.0000 0.1169 0.0000 -0.0987 0.0000

-1 0 0 2 -1 31.66 0.1175 0.0000 -0.2332 0.0000 0.1968 0.0000
-1 0 0 2 0 31.81 -1.8236 0.0000 3.6018 0.0000 -3.0399 0.0000
-1 0 0 2 1 31.96 0.1316 0.0000 -0.2587 0.0000 0.2183 0.0000
1 0 -2 2 -1 32.61 0.0179 0.0000 -0.0344 0.0000 0.0290 0.0000

-1 -1 0 2 0 34.85 -0.0855 0.0000 0.1542 0.0000 -0.1302 0.0000
0 2 2 -2 2 91.31 -0.0573 0.0000 0.0395 0.0000 -0.0333 0.0000
0 1 2 -2 1 119.61 0.0329 0.0000 -0.0173 0.0000 0.0146 0.0000
0 1 2 -2 2 121.75 -1.8847 0.0000 0.9726 0.0000 -0.8209 0.0000
0 0 2 -2 0 173.31 0.2510 0.0000 -0.0910 0.0000 0.0768 0.0000
0 0 2 -2 1 177.84 1.1703 0.0000 -0.4135 0.0000 0.3490 0.0000

0 0 2 -2 2 182.62 -49.7174 0.4330 17.1056 0.1490 -14.4370 -0.1257
0 2 0 0 0 182.63 -0.1936 0.0000 0.0666 0.0000 -0.0562 0.0000
2 0 0 -2 -1 199.84 0.0489 0.0000 -0.0154 0.0000 0.0130 0.0000
2 0 0 -2 0 205.89 -0.5471 0.0000 0.1670 0.0000 -0.1409 0.0000
2 0 0 -2 1 212.32 0.0367 0.0000 -0.0108 0.0000 0.0092 0.0000

0 -1 2 -2 1 346.60 -0.0451 0.0000 0.0082 0.0000 -0.0069 0.0000
0 1 0 0 -1 346.64 0.0921 0.0000 -0.0167 0.0000 0.0141 0.0000
0 -1 2 -2 2 365.22 0.8281 0.0000 -0.1425 0.0000 0.1202 0.0000
0 1 0 0 0 365.26 -15.8887 0.1530 2.7332 0.0263 -2.3068 -0.0222
0 1 0 0 1 386.00 -0.1382 0.0000 0.0225 0.0000 -0.0190 0.0000

1 0 0 -1 0 411.78 0.0348 0.0000 -0.0053 0.0000 0.0045 0.0000
2 0 -2 0 0 -1095.18 -0.1372 0.0000 -0.0079 0.0000 0.0066 0.0000

-2 0 2 0 1 1305.48 0.4211 0.0000 -0.0203 0.0000 0.0171 0.0000
-1 1 0 1 0 3232.86 -0.0404 0.0000 0.0008 0.0000 -0.0007 0.0000
0 0 0 0 2 -3399.19 7.8998 0.0000 0.1460 0.0000 -0.1232 0.0000
0 0 0 0 1 -6798.38 -1617.2681 0.0000 -14.9471 0.0000 12.6153 0.0000
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Table 8.2a: Coefficients of sin(argument) and cos(argument) of diurnal variations in pole coordinates
xp and yp caused by ocean tides. The units are µas; γ denotes GMST+π.

argument Doodson Period xp yp

Tide γ l l′ F D Ω number (days) sin cos sin cos

1 -1 0 -2 -2 -2 117.655 1.2113611 0.0 0.9 -0.9 -0.1
1 -2 0 -2 0 -1 125.745 1.1671262 0.1 0.6 -0.6 0.1

2Q1 1 -2 0 -2 0 -2 125.755 1.1669259 0.3 3.4 -3.4 0.3
1 0 0 -2 -2 -1 127.545 1.1605476 0.1 0.8 -0.8 0.1

σ1 1 0 0 -2 -2 -2 127.555 1.1603495 0.5 4.2 -4.1 0.5
1 -1 0 -2 0 -1 135.645 1.1196993 1.2 5.0 -5.0 1.2

Q1 1 -1 0 -2 0 -2 135.655 1.1195148 6.2 26.3 -26.3 6.2
1 1 0 -2 -2 -1 137.445 1.1136429 0.2 0.9 -0.9 0.2

RO1 1 1 0 -2 -2 -2 137.455 1.1134606 1.3 5.0 -5.0 1.3
1 0 0 -2 0 0 145.535 1.0761465 -0.3 -0.8 0.8 -0.3
1 0 0 -2 0 -1 145.545 1.0759762 9.2 25.1 -25.1 9.2

O1 1 0 0 -2 0 -2 145.555 1.0758059 48.8 132.9 -132.9 48.8
1 -2 0 0 0 0 145.755 1.0750901 -0.3 -0.9 0.9 -0.3

TO1 1 0 0 0 -2 0 147.555 1.0695055 -0.7 -1.7 1.7 -0.7
1 -1 0 -2 2 -2 153.655 1.0406147 -0.4 -0.9 0.9 -0.4
1 1 0 -2 0 -1 155.445 1.0355395 -0.3 -0.6 0.6 -0.3
1 1 0 -2 0 -2 155.455 1.0353817 -1.6 -3.5 3.5 -1.6

M1 1 -1 0 0 0 0 155.655 1.0347187 -4.5 -9.6 9.6 -4.5
1 -1 0 0 0 -1 155.665 1.0345612 -0.9 -1.9 1.9 -0.9

χ1 1 1 0 0 -2 0 157.455 1.0295447 -0.9 -1.8 1.8 -0.9
π1 1 0 -1 -2 2 -2 162.556 1.0055058 1.5 3.0 -3.0 1.5

1 0 0 -2 2 -1 163.545 1.0028933 -0.3 -0.6 0.6 -0.3
P1 1 0 0 -2 2 -2 163.555 1.0027454 26.1 51.2 -51.2 26.1

1 0 1 -2 2 -2 164.554 1.0000001 -0.2 -0.4 0.4 -0.2
S1 1 0 -1 0 0 0 164.556 0.9999999 -0.6 -1.2 1.2 -0.6

1 0 0 0 0 1 165.545 0.9974159 1.5 3.0 -3.0 1.5
K1 1 0 0 0 0 0 165.555 0.9972696 -77.5 -151.7 151.7 -77.5

1 0 0 0 0 -1 165.565 0.9971233 -10.5 -20.6 20.6 -10.5
1 0 0 0 0 -2 165.575 0.9969771 0.2 0.4 -0.4 0.2

ψ1 1 0 1 0 0 0 166.554 0.9945541 -0.6 -1.2 1.2 -0.6
φ1 1 0 0 2 -2 2 167.555 0.9918532 -1.1 -2.1 2.1 -1.1

TT1 1 -1 0 0 2 0 173.655 0.9669565 -0.7 -1.4 1.4 -0.7
J1 1 1 0 0 0 0 175.455 0.9624365 -3.5 -7.3 7.3 -3.5

1 1 0 0 0 -1 175.465 0.9623003 -0.7 -1.4 1.4 -0.7
So1 1 0 0 0 2 0 183.555 0.9341741 -0.4 -1.1 1.1 -0.4

1 2 0 0 0 0 185.355 0.9299547 -0.2 -0.5 0.5 -0.2
Oo1 1 0 0 2 0 2 185.555 0.9294198 -1.1 -3.4 3.4 -1.1

1 0 0 2 0 1 185.565 0.9292927 -0.7 -2.2 2.2 -0.7
1 0 0 2 0 0 185.575 0.9291657 -0.1 -0.5 0.5 -0.1

ν1 1 1 0 2 0 2 195.455 0.8990932 0.0 -0.6 0.6 0.0
1 1 0 2 0 1 195.465 0.8989743 0.0 -0.4 0.4 0.0
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Table 8.2b: Coefficients of sin(argument) and cos(argument) of semidiurnal variations in pole co-
ordinates xp and yp caused by ocean tides. The units are µas; γ denotes GMST+ π.

argument Doodson Period xp yp

Tide γ l l′ F D Ω number (days) sin cos sin cos

2 -3 0 -2 0 -2 225.855 0.5484264 -0.5 0.0 0.6 0.2
2 -1 0 -2 -2 -2 227.655 0.5469695 -1.3 -0.2 1.5 0.7

2N2 2 -2 0 -2 0 -2 235.755 0.5377239 -6.1 -1.6 3.1 3.4
µ2 2 0 0 -2 -2 -2 237.555 0.5363232 -7.6 -2.0 3.4 4.2

2 0 1 -2 -2 -2 238.554 0.5355369 -0.5 -0.1 0.2 0.3
2 -1 -1 -2 0 -2 244.656 0.5281939 0.5 0.1 -0.1 -0.3
2 -1 0 -2 0 -1 245.645 0.5274721 2.1 0.5 -0.4 -1.2

N2 2 -1 0 -2 0 -2 245.655 0.5274312 -56.9 -12.9 11.1 32.9
2 -1 1 -2 0 -2 246.654 0.5266707 -0.5 -0.1 0.1 0.3

ν2 2 1 0 -2 -2 -2 247.455 0.5260835 -11.0 -2.4 1.9 6.4
2 1 1 -2 -2 -2 248.454 0.5253269 -0.5 -0.1 0.1 0.3
2 -2 0 -2 2 -2 253.755 0.5188292 1.0 0.1 -0.1 -0.6
2 0 -1 -2 0 -2 254.556 0.5182593 1.1 0.1 -0.1 -0.7
2 0 0 -2 0 -1 255.545 0.5175645 12.3 1.0 -1.4 -7.3

M2 2 0 0 -2 0 -2 255.555 0.5175251 -330.2 -27.0 37.6 195.9
2 0 1 -2 0 -2 256.554 0.5167928 -1.0 -0.1 0.1 0.6

λ2 2 -1 0 -2 2 -2 263.655 0.5092406 2.5 -0.3 -0.4 -1.5
L2 2 1 0 -2 0 -2 265.455 0.5079842 9.4 -1.4 -1.9 -5.6

2 -1 0 0 0 0 265.655 0.5078245 -2.4 0.4 0.5 1.4
2 -1 0 0 0 -1 265.665 0.5077866 -1.0 0.2 0.2 0.6

T2 2 0 -1 -2 2 -2 272.556 0.5006854 -8.5 3.5 3.3 5.1
S2 2 0 0 -2 2 -2 273.555 0.5000000 -144.1 63.6 59.2 86.6
R2 2 0 1 -2 2 -2 274.554 0.4993165 1.2 -0.6 -0.5 -0.7

2 0 0 0 0 1 275.545 0.4986714 0.5 -0.2 -0.2 -0.3
K2 2 0 0 0 0 0 275.555 0.4986348 -38.5 19.1 17.7 23.1

2 0 0 0 0 -1 275.565 0.4985982 -11.4 5.8 5.3 6.9
2 0 0 0 0 -2 275.575 0.4985616 -1.2 0.6 0.6 0.7
2 1 0 0 0 0 285.455 0.4897717 -1.8 1.8 1.7 1.0
2 1 0 0 0 -1 285.465 0.4897365 -0.8 0.8 0.8 0.5
2 0 0 2 0 2 295.555 0.4810750 -0.3 0.6 0.7 0.2
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Table 8.3a: Coefficients of sin(argument) and cos(argument) of diurnal variations in UT1 and LOD
caused by ocean tides. The units are µs; γ denotes GMST+ π.

argument Doodson Period UT1 LOD

Tide γ l l′ F D Ω number (days) sin cos sin cos

1 -1 0 -2 -2 -2 117.655 1.2113611 0.40 -0.08 -0.4 -2.1
1 -2 0 -2 0 -1 125.745 1.1671262 0.19 -0.06 -0.3 -1.1

2Q1 1 -2 0 -2 0 -2 125.755 1.1669259 1.03 -0.31 -1.7 -5.6
1 0 0 -2 -2 -1 127.545 1.1605476 0.22 -0.07 -0.4 -1.2

σ1 1 0 0 -2 -2 -2 127.555 1.1603495 1.19 -0.39 -2.1 -6.4
1 -1 0 -2 0 -1 135.645 1.1196993 0.97 -0.47 -2.7 -5.4

Q1 1 -1 0 -2 0 -2 135.655 1.1195148 5.12 -2.50 -14.0 -28.7
1 1 0 -2 -2 -1 137.445 1.1136429 0.17 -0.09 -0.5 -1.0

RO1 1 1 0 -2 -2 -2 137.455 1.1134606 0.91 -0.47 -2.7 -5.1
1 0 0 -2 0 0 145.535 1.0761465 -0.09 0.07 0.4 0.5
1 0 0 -2 0 -1 145.545 1.0759762 3.03 -2.28 -13.3 -17.7

O1 1 0 0 -2 0 -2 145.555 1.0758059 16.02 -12.07 -70.5 -93.6
1 -2 0 0 0 0 145.755 1.0750901 -0.10 0.08 0.5 0.6

TO1 1 0 0 0 -2 0 147.555 1.0695055 -0.19 0.15 0.9 1.1
1 -1 0 -2 2 -2 153.655 1.0406147 -0.08 0.07 0.5 0.5
1 1 0 -2 0 -1 155.445 1.0355395 -0.06 0.05 0.3 0.4
1 1 0 -2 0 -2 155.455 1.0353817 -0.31 0.27 1.7 1.9

M1 1 -1 0 0 0 0 155.655 1.0347187 -0.86 0.75 4.6 5.2
1 -1 0 0 0 -1 155.665 1.0345612 -0.17 0.15 0.9 1.0

χ1 1 1 0 0 -2 0 157.455 1.0295447 -0.16 0.14 0.8 1.0
π1 1 0 -1 -2 2 -2 162.556 1.0055058 0.31 -0.19 -1.2 -2.0

1 0 0 -2 2 -1 163.545 1.0028933 -0.06 0.03 0.2 0.4
P1 1 0 0 -2 2 -2 163.555 1.0027454 5.51 -3.10 -19.4 -34.5

1 0 1 -2 2 -2 164.554 1.0000001 -0.05 0.02 0.2 0.3
S1 1 0 -1 0 0 0 164.556 0.9999999 -0.13 0.07 0.4 0.8

1 0 0 0 0 1 165.545 0.9974159 0.35 -0.17 -1.1 -2.2
K1 1 0 0 0 0 0 165.555 0.9972696 -17.62 8.55 53.9 111.0

1 0 0 0 0 -1 165.565 0.9971233 -2.39 1.16 7.3 15.1
1 0 0 0 0 -2 165.575 0.9969771 0.05 -0.03 -0.2 -0.3

ψ1 1 0 1 0 0 0 166.554 0.9945541 -0.14 0.06 0.4 0.9
φ1 1 0 0 2 -2 2 167.555 0.9918532 -0.27 0.11 0.7 1.7

TT1 1 -1 0 0 2 0 173.655 0.9669565 -0.29 0.04 0.3 1.9
J1 1 1 0 0 0 0 175.455 0.9624365 -1.61 0.19 1.2 10.5

1 1 0 0 0 -1 175.465 0.9623003 -0.32 0.04 0.2 2.1
So1 1 0 0 0 2 0 183.555 0.9341741 -0.41 -0.01 -0.0 2.7

1 2 0 0 0 0 185.355 0.9299547 -0.21 -0.01 -0.0 1.4
Oo1 1 0 0 2 0 2 185.555 0.9294198 -1.44 -0.04 -0.3 9.7

1 0 0 2 0 1 185.565 0.9292927 -0.92 -0.02 -0.2 6.2
1 0 0 2 0 0 185.575 0.9291657 -0.19 0.00 -0.0 1.3

ν1 1 1 0 2 0 2 195.455 0.8990932 -0.40 -0.02 -0.2 2.8
1 1 0 2 0 1 195.465 0.8989743 -0.25 -0.02 -0.1 1.8
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Table 8.3b: Coefficients of sin(argument) and cos(argument) of semidiurnal variations in UT1 and
LOD caused by ocean tides. The units are µs; γ denotes GMST+ π.

argument Doodson Period UT1 LOD

Tide γ l l′ F D Ω number (days) sin cos sin cos

2 -3 0 -2 0 -2 225.855 0.5484264 -0.09 -0.01 -0.1 1.0
2 -1 0 -2 -2 -2 227.655 0.5469695 -0.22 -0.03 -0.4 2.6

2N2 2 -2 0 -2 0 -2 235.755 0.5377239 -0.64 -0.18 -2.1 7.4
µ2 2 0 0 -2 -2 -2 237.555 0.5363232 -0.74 -0.22 -2.6 8.7

2 0 1 -2 -2 -2 238.554 0.5355369 -0.05 -0.02 -0.2 0.6
2 -1 -1 -2 0 -2 244.656 0.5281939 0.03 0.01 0.2 -0.4
2 -1 0 -2 0 -1 245.645 0.5274721 0.14 0.06 0.7 -1.7

N2 2 -1 0 -2 0 -2 245.655 0.5274312 -3.79 -1.56 -18.6 45.2
2 -1 1 -2 0 -2 246.654 0.5266707 -0.03 -0.01 -0.2 0.4

ν2 2 1 0 -2 -2 -2 247.455 0.5260835 -0.70 -0.30 -3.6 8.3
2 1 1 -2 -2 -2 248.454 0.5253269 -0.03 -0.01 -0.2 0.4
2 -2 0 -2 2 -2 253.755 0.5188292 0.05 0.02 0.3 -0.6
2 0 -1 -2 0 -2 254.556 0.5182593 0.06 0.03 0.3 -0.7
2 0 0 -2 0 -1 255.545 0.5175645 0.60 0.27 3.2 -7.3

M2 2 0 0 -2 0 -2 255.555 0.5175251 -16.19 -7.25 -86.8 196.6
2 0 1 -2 0 -2 256.554 0.5167928 -0.05 -0.02 -0.3 0.6

λ2 2 -1 0 -2 2 -2 263.655 0.5092406 0.11 0.03 0.4 -1.4
L2 2 1 0 -2 0 -2 265.455 0.5079842 0.42 0.12 1.4 -5.3

2 -1 0 0 0 0 265.655 0.5078245 -0.11 -0.03 -0.4 1.3
2 -1 0 0 0 -1 265.665 0.5077866 -0.05 -0.01 -0.2 0.6

T2 2 0 -1 -2 2 -2 272.556 0.5006854 -0.44 -0.02 -0.2 5.5
S2 2 0 0 -2 2 -2 273.555 0.5000000 -7.55 -0.16 -2.0 94.8
R2 2 0 1 -2 2 -2 274.554 0.4993165 0.06 0.00 0.0 -0.8

2 0 0 0 0 1 275.545 0.4986714 0.03 0.00 -0.0 -0.3
K2 2 0 0 0 0 0 275.555 0.4986348 -2.10 0.04 0.5 26.5

2 0 0 0 0 -1 275.565 0.4985982 -0.63 0.01 0.2 7.9
2 0 0 0 0 -2 275.575 0.4985616 -0.07 0.00 0.0 0.9
2 1 0 0 0 0 285.455 0.4897717 -0.15 0.04 0.5 1.9
2 1 0 0 0 -1 285.465 0.4897365 -0.06 0.02 0.2 0.8
2 0 0 2 0 2 295.555 0.4810750 -0.05 0.02 0.2 0.6
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Table 8.4: Ocean tidal variations in polar motion and polar motion excitation.

Polar Motion Polar Motion Excitation
Prograde Retrograde Prograde Retrograde

Tide Argument Period amp phase amp phase amp phase amp phase
l l′ F D Ω (days) (µas) (◦) (µas) (◦) (µas) (◦) (µas) (◦)

mtm 1 0 2 0 1 9.12 4.43 -112.62 5.57 21.33 205.83 67.21 269.95 21.17
Mtm 1 0 2 0 2 9.13 10.72 -112.56 13.48 21.30 497.59 67.27 652.59 21.14
mf 0 0 2 0 1 13.63 27.35 -91.42 30.59 13.31 841.32 88.42 1002.12 13.15
Mf 0 0 2 0 2 13.66 66.09 -91.31 73.86 13.27 2028.73 88.53 2414.94 13.11
Msf 0 0 0 2 0 14.77 5.94 -87.13 6.42 11.75 168.13 92.70 194.74 11.60
Mm 1 0 0 0 0 27.56 43.74 -56.70 31.12 -0.91 643.61 123.13 520.16 -1.06
Msm -1 0 0 2 0 31.81 8.85 -51.11 5.42 -4.21 111.62 128.72 79.23 -4.36
Ssa 0 0 2 -2 2 182.62 86.48 -20.30 99.77 175.57 118.56 159.42 336.32 175.46
Sa 0 1 0 0 0 365.26 17.96 -17.38 152.15 170.60 3.33 161.60 332.53 170.51
Mn 0 0 0 0 1 -6798.38 208.17 166.89 186.98 166.67 221.43 166.88 175.07 166.68
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9 Models for atmospheric propagation delays

9 Models for atmospheric propagation delays

Techniques operated for the realization of the IERS reference systems make use of
electromagnetic signals received on the surface of the Earth. During their transit
of the atmosphere, the signals experience delays which must be modeled in the
analysis software. This chapter presents models for the propagation of optical
signals in the troposphere (9.1), for radio signals in the troposphere (9.2) and
for radio signals in the ionosphere (9.4). For Doppler techniques which use time-
differenced phases as observables, the models presented in this chapter should be
time-differenced as well.

9.1 Tropospheric model for optical techniques

The accuracy of satellite and lunar laser ranging (SLR & LLR) is greatly affected
by the residual errors in modeling the effect of signal propagation through the
troposphere and stratosphere. Although several models for atmospheric correction
have been developed, the more traditional approach in LR data analysis uses a
model developed in the 1970s (Marini and Murray, 1973). Mendes et al. (2002)
pointed out some limitations in that model, namely the modeling of the elevation
dependence of the zenith atmospheric delay, i.e. the mapping function (MF)
component of the model. The MFs developed by Mendes et al. (2002) represent
a significant improvement over the MF in the Marini-Murray model and other
known MFs. Of particular interest is the ability of the new MFs to be used in
combination with any zenith delay (ZD) model to predict the atmospheric delay
in the line-of-sight direction. Subsequently, Mendes and Pavlis (2004) developed
a more accurate ZD model, applicable to the range of wavelengths used in modern
LR instrumentation. The combined set of the new mapping function and the new
ZD model were adopted in October 2006 by the Analysis Working Group of the
International Laser Ranging Service (ILRS) as the new standard model to be used
for the analysis of LR data starting January 1, 2007. The alternative to correct
the atmospheric delay using two-color ranging systems is still at an experimental
stage.

9.1.1 Zenith delay models

The atmospheric propagation delay experienced by a laser signal in the zenith
direction is defined as

dzatm = 10−6

ra∫
rs

Ndz =

ra∫
rs

(n− 1) dz, (9.1)

or, if we split the zenith delay into hydrostatic (dzh) and non-hydrostatic (dznh)
components,

dzatm = dzh + dznh = 10−6

ra∫
rs

Nhdz + 10−6

ra∫
rs

Nnhdz, (9.2)

where N = (n− 1) × 106 is the (total) group refractivity of moist air, n is the
(total) refractive index of moist air, Nh and Nnh are the hydrostatic and the non-
hydrostatic components of the refractivity, rs is the geocentric radius of the laser
station, ra is the geocentric radius of the top of the (neutral) atmosphere, and
dzatm and dz have length units.
In the last few years, the computation of the group refractivity at optical wave-
lengths has received special attention and, as a consequence, the International As-
sociation of Geodesy (IAG) (IUGG, 1999) recommended a new procedure to com-
pute the group refractivity, following Ciddor (1996) and Ciddor and Hill (1999).
Based on this procedure, Mendes and Pavlis (2004) derived closed-form expres-
sions to compute the zenith delay. For the hydrostatic component, we have

dzh = 0.002416579
fh(λ)

fs(φ,H)
Ps, (9.3)
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where dzh is the zenith hydrostatic delay, in meters, and Ps is the surface barometric
pressure, in hPa. The function fs(φ,H) is given by

fs(φ,H) = 1− 0.00266 cos 2φ− 0.00000028H, (9.4)

where φ is the geodetic latitude of the station and H is the geodetic height of
the station in meters <1>, fh (λ) is the dispersion equation for the hydrostatic
component

fh (λ) = 10−2 ×

[
k∗1

(
k0 + σ2

)
(k0 − σ2)2 + k∗3

(
k2 + σ2

)
(k2 − σ2)2

]
CCO2 , (9.5)

with k0 = 238.0185 µm−2, k2 = 57.362 µm−2, k∗1 = 19990.975 µm−2, and k∗3 =
579.55174 µm−2, σ is the wave number (σ = λ−1, where λ is the wavelength, in
µm), CCO2 = 1 + 0.534 × 10−6 (xc − 450), and xc is the carbon dioxide (CO2)
content, in ppm. In the conventional formula, a CO2 content of 375 ppm should
be used, in line with the IAG recommendations, thus CCO2 = 0.99995995 should
be used.

For the non-hydrostatic component, we have:

dznh = 10−4 (5.316fnh(λ)− 3.759fh(λ))
es

fs(φ,H)
, (9.6)

where dznh is the zenith non-hydrostatic delay, in meters, and es is the surface
water vapor pressure, in hPa. fnh is the dispersion formula for the non-hydrostatic
component:

fnh (λ) = 0.003101
(
ω0 + 3ω1σ

2 + 5ω2σ
4 + 7ω3σ

6) , (9.7)

where ω0 = 295.235, ω1 = 2.6422 µm2, ω2 = −0.032380 µm4, and ω3 = 0.004028
µm6.

The subroutine FCUL ZTD HPA.F to compute the total zenith delay is available at
<2>.

From the assessment of the zenith models against ray tracing for the most used
wavelengths in LR, it can be concluded that these zenith delay models have over-
all rms errors for the total zenith delay below 1 mm across the whole frequency
spectrum (Mendes and Pavlis, 2003; Mendes and Pavlis, 2004).

9.1.2 Mapping function

Due to the small contribution of water vapor to atmospheric refraction at visible
wavelengths, we can consider a single MF for laser ranging. In this case, we have:

datm = dzatm ·m(e), (9.8)

where dzatm is the total zenith propagation delay and m(e) the (total) MF. Mendes
et al. (2002) derived a MF, named FCULa, based on a truncated form of the
continued fraction in terms of 1/sin(e) (Marini, 1972), normalized to unity at the
zenith

m(e) =

1 +
a1

1 +
a2

1 + a3

sin e+
a1

sin e+
a2

sin e+ a3

. (9.9)

Note that the same formula is used for radio techniques, but with different vari-
ables, see Equation (9.13). The FCULa MF is based on ray tracing through one
full year of radiosonde data from 180 globally distributed stations. It is valid for a

1originally, Saastamoinen (1972) used orthometric height, however, the formula is insensitive to the difference, so
geodetic height can be used instead without loss of accuracy.

2ftp://tai.bipm.org/iers/conv2010/chapter9
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Table 9.1: Coefficients (aij) for the FCULa mapping function, see Equation (9.10). Coefficients (ai1)
are in C−1 and coefficients (ai3) in m−1.

aij FCULa

a10 (12100.8±1.9)× 10−7

a11 (1729.5±4.3)× 10−9

a12 (319.1±3.1)× 10−7

a13 (-1847.8±6.5)× 10−11

a20 (30496.5±6.6)× 10−7

a21 (234.6±1.5)× 10−8

a22 (-103.5±1.1)× 10−6

a23 (-185.6±2.2)× 10−10

a30 (6877.7±1.2)× 10−5

a31 (197.2±2.8)× 10−7

a32 (-345.8±2.0)× 10−5

a33 (106.0±4.2)× 10−9

wide range of wavelengths from 0.355 µm to 1.064 µm (Mendes and Pavlis, 2003)
and for elevation angles greater than 3 degrees, if we neglect the contribution of
horizontal refractivity gradients. The coefficients ai (i=1,2,3) have the following
mathematical formulation:

ai = ai0 + ai1ts + ai2 cosφ+ ai3H, (9.10)

where ts is the temperature at the station in Celsius degrees, H is the geodetic
height of the station, in meters, and the coefficients are given in Table 1, see
Mendes et al. (2002) for details. The subroutine FCUL A.F to compute the FCULa
mapping function is available at <2>.

The new mapping functions represent a significant improvement over other map-
ping functions available and have the advantage of being easily combined with dif-
ferent zenith delay models. The analysis of two years of SLR data from LAGEOS
and LAGEOS 2 indicate a clear improvement in the estimated station heights
(8% reduction in variance), while the simultaneously adjusted tropospheric zenith
delay biases were all consistent with zero (Mendes et al., 2002).

For users who do not have extreme accuracy requirements or do not know the
station temperature, the FCULb mapping function, which depends on the station
location and the day of the year, has been developed, see Mendes et al. (2002)
for details. The subroutine FCUL B.F to compute the FCULb mapping function is
available at <2>.

9.1.3 Future developments

The accuracy of the new atmospheric delay models are still far from the accuracy
required for global climate change studies. The goal as set forth by the Inter-
national Laser Ranging Service (ILRS) is better than one millimeter. The LR
community has been looking into ways to achieve that accuracy. One significant
component that is missing from the above models is to account for the effect of
horizontal gradients in the atmosphere, an error source that contributes up to 5
cm of delay at low elevation angles. Ranging at low elevation angles improves the
de-correlation of errors in the vertical coordinate with errors in the measurement
process (biases). Stations thus strive to range as low as possible, thence the need
for model improvements.

Global meteorological fields are now becoming more readily accessible, with higher
spatio-temporal resolution, better accuracy and more uniform quality. This is
primarily due to the availability of satellite observations with global coverage twice
daily. Hulley and Pavlis (2007) developed a new technique, and tested it with real
data, computing the total atmospheric delay, including horizontal gradients, via
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three-dimensional atmospheric ray tracing (3D ART) with meteorological fields
from the Atmospheric Infrared Sounder (AIRS). This technique has already been
tested and applied to two years of SLR data from LAGEOS 1 and 2, and for ten
core, globally-distributed SLR stations. Replacing the atmospheric corrections
estimated from the Mendes-Pavlis ZD and MF models with 3D ART resulted in
reducing the variance of the SLR range residuals by up to 25% for all the data
used in the analysis. As of May 2007, an effort is in progress to establish a service
that will compute these corrections for all of the collected SLR and LLR data in
the future. Once this service is in place, it is expected that this new approach will
be adopted as the standard for SLR and LLR data reductions.

9.2 Tropospheric model for radio techniques

The non-dispersive delay imparted by the atmosphere on a radio signal up to
30 GHz in frequency, which reaches a magnitude of about 2.3 m at sea level, is
conveniently divided into “hydrostatic” and “wet” components. The hydrostatic
delay is caused by the refractivity of the dry gases (mainly N2 and O2) in the tro-
posphere and by most of the nondipole component of the water vapor refractivity.
The rest of the water vapor refractivity is responsible for most of the wet delay.
The hydrostatic delay component accounts for roughly 90% of the total delay at
any given site globally, but can vary between about 80 and 100% depending on
location and time of year. It can be accurately computed a priori based on reliable
surface pressure data using the formula of Saastamoinen (1972) as given by Davis
et al. (1985):

Dhz =
[(0.0022768± 0.0000005)]P0

fs(φ,H)
(9.11)

where Dhz is the zenith hydrostatic delay in meters, P0 is the total atmospheric
pressure in hPa (equivalent to millibars) at the antenna reference point (e.g. an-
tenna phase center for Global Positioning System, the intersection of the axes of
rotation for VLBI 3), and the function fs(φ,H) is given in Equation (9.4).

There is currently no simple method to estimate an accurate a priori value for
the wet tropospheric delay, although research continues into the use of external
monitoring devices (such as water vapor radiometers) for this purpose. So, in most
precise applications where sub-decimeter accuracy is sought, the residual delay
must usually be estimated with the other geodetic quantities of interest. The
estimation is facilitated by a simple parameterization of the tropospheric delay,
where the line-of-sight delay, DL, is expressed as a function of four parameters as
follows:

DL = mh(e)Dhz +mw(e)Dwz +mg(e)[GN cos(a) +GE sin(a)]. (9.12)

The four parameters in this expression are the zenith hydrostatic delay, Dhz, the
zenith wet delay, Dwz, and a horizontal delay gradient with components GN and
GE . mh, mw and mg are the hydrostatic, wet, and gradient mapping functions,
respectively, and e is the elevation angle of the observation direction in vacuum.
a is the azimuth angle in which the signal is received, measured east from north.

Horizontal gradient parameters are needed to account for a systematic component
in the N/S direction towards the equator due to the atmospheric bulge (MacMillan
and Ma, 1997), which are about -0.5/+0.5 mm at mid-latitudes in the northern
and southern hemispheres, respectively. They also capture the effects of random
components in both directions due to weather systems. Failing to model gradients
in radiometric analyses can lead to systematic errors in the scale of the estimated
terrestrial reference frame at the level of about 1 ppb, as well as cause latitude and
declination offsets in station and source positions, the latter also depending on the
station distribution (Titov, 2004). A mean a priori model for the gradients which
is based on re-analysis data of the European Centre for Medium-Range Weather

3In the case of VLBI, provision should be made to account for the actual path of the photons due to the possible
altitude variation of the reference point (Sovers and Jacobs, 1996)
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Forecasts (ECMWF) is provided by the subroutine APG.F available at <4> and
<2>. However, an a priori model cannot replace the (additional) estimation of
gradient parameters, if observations at elevation angles below 15◦ are analyzed.
In the case of GPS analyses, such low-elevation data could be deweighted because
of multipath effects.

Horizontal tropospheric gradients can reach or exceed 1 mm and their estimation
was shown by Chen and Herring (1997) and MacMillan (1995) to be beneficial
for VLBI, and by Bar-Sever et al. (1998) to be beneficial for GPS. Chen and
Herring (1997) propose to use mg(e) = 1/(sin e tan e + 0.0032). Unlike other
gradient mapping functions this equation is not affected by singularity at very
low elevations (below 5◦).

The hydrostatic and wet mapping functions, mh and mw, for the neutral atmo-
sphere depend on the vertical distribution of the hydrostatic and wet refractiv-
ity above the geodetic sites. With the availability of numerical weather models
(NWM) this information can currently be extracted globally with a temporal res-
olution of six hours (Niell, 2001). Unlike previous mapping functions these are
not limited in their accuracy by the use of only surface meteorological data, as
in the functions of Ifadis (1986) or in MTT (Herring, 1992), or of the lapse rate
and the heights of the isothermal layer and the tropopause as additionally used
in the function of Lanyi (1984), nor by the use of average in situ properties of the
atmosphere, even if validated with radiosonde data, as in NMF (Niell, 1996). The
general form of the hydrostatic and wet mapping functions is (Herring, 1992)

mh,w (e) =

1 +
a

1 +
b

1 + c

sin e+
a

sin e+
b

sin e+ c

. (9.13)

The Vienna Mapping Function 1 (VMF1) (Boehm et al., 2006a) is based on exact
ray traces through the refractivity profiles of a NWM at 3◦ elevation and empirical
equations for the b and c coefficients of the continued fraction in Equation (9.13).
Niell (2006) compared mapping functions determined from radiosonde data in
1992 with VMF1 and found that the equivalent station height standard deviations
are less than 3 mm, which is significantly better than for other mapping functions
available. These results are confirmed by VLBI analyses as shown by Boehm et
al. (2007a) and Tesmer et al. (2007), respectively. Thus, VMF1 is recommended
for any global application, such as the determination of the terrestrial reference
frame and Earth orientation parameters.

At the webpage <4>, the a coefficients of VMF1 as derived from data of the
ECMWF are provided with a time interval of 6 hours for the positions of most
sites of the International GNSS Service (IGS), the International VLBI Service for
Geodesy and Astrometry (IVS), and the International DORIS Service (IDS), as
well as on a global 2.5◦×2.0◦ grid. Kouba (2008) compares results from the grids
with VMF1 given at the sites and provides algorithms on how to use the grids.

The Global Mapping Function (GMF) (Boehm et al., 2006b) is an empirical map-
ping function in the tradition of NMF that can be calculated using only station
latitude, longitude (not used by NMF), height, and day of the year. GMF, which
is based on spherical harmonics up to degree and order 9, was developed with the
goal to be more accurate than NMF and to be consistent with VMF1. Some com-
parisons of GMF, VMF1 and other MFs with radiosonde data may be found in
(Niell, 2006). GMF is easy to implement and can be used when the best accuracy
is not required or when VMF1 is not available. The Fortran subroutines VMF1.F

and GMF.F are available at <2> and <4>.

9.3 Sources for meteorological data

Because 1 mbar pressure error causes an a priori delay error of about 2.3 mm at sea
level, it is essential to use accurate estimates of meteorological data (Tregoning and

4http://ggosatm.hg.tuwien.ac.at/DELAY
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Herring, 2006). If meteorological instrumentation is not available, meteorological
data may be retrieved from a NWM, e.g. the ECMWF as provided together with
VMF1 at <4>. In both cases adjustments of the pressure should be applied for
the height difference between the location of the pressure measurement (from in
situ instrumentation or from NWM) and the reference point of the space geodesy
instrument. Commonly used formulas for the adjustment can be found in (Boehm
et al., 2007b). Alternatively, local pressure and temperature estimates could be
determined with the empirical model GPT (Boehm et al., 2007b) that has been
developed similarly to the GMF, and is provided as a Fortran routine, GPT.F, at
<2> and <4>.

9.4 Ionospheric model for radio techniques

Dispersive effects of the ionosphere on the propagation of radio signals are clas-
sically accounted for by linear combination of multi-frequency observations. In
past years it has been shown that this approach induces errors on the computed
time of propagation that can reach 100 ps for GPS due to the fact that higher
order dispersive effects are not considered. For wide-band VLBI observations,
the induced errors might reach a couple of ps. In this section the estimation of
the effect of higher-order neglected ionospheric terms and possible conventional
models are summarized for the microwave range, with frequencies from hundreds
of MHz to few tens of GHz.

9.4.1 Ionospheric delay dependence on radio signals including higher order terms

The delay δρI experienced by the transionospheric electromagnetic signals, travel-
ling from the transmitter T at ~rT to the receiver R at ~rR, separated by a distance
ρ, can be expressed by the integral of the refractive index n along the ray path:

δρI =

∫ ~rR

~rT

c
dl

v
− ρ =

∫ ~rR

~rT

(n− 1)dl (9.14)

where c = 299792458 m/s is the light speed in free space, v is the actual tran-
sionospheric signal propagation velocity at the given place and dl is the differential
length element.

Effects on carrier phase data

By neglecting the frictional force, assuming that we are in a cold, collisionless,
magnetized plasma such as the ionosphere, the refractive index for the carrier
phase, np, can be expressed by the Appleton expression, for both ordinary (upper
sign) and extraordinary (lower sign) waves, see for instance Davies (1990) page
72:

n2
p = 1− X

1− Y 2
T

2(1−X)
±
[

Y 4
T

4(1−X)2
+ Y 2

L

] 1
2

(9.15)

where

X =
ω2
p

ω2
, YL = −ωg

ω
cos θ, YT = −ωg

ω
sin θ, (9.16)

where θ is the angle between the magnetic field ~B and the electromagnetic (EM)

propagation direction ~k, and where ω = 2πf is the circular frequency correspond-
ing to a frequency f . This applies to the carrier circular frequency ω, and to the
plasma ωp and gyro ωg circular frequencies associated to the free electrons of the
ionosphere:

ω2
p =

Neq
2

meε0
ωg =

Bq

me
(9.17)

where Ne is the number density of free electrons and B is the magnetic field
modulus (both depending on time and position along the EM ray), q ' 1.6022×
10−19C is the absolute value of the electron charge, me ' 9.1094 × 10−31kg is

137



N
o

.
3

6 IERS
Technical
Note

9 Models for atmospheric propagation delays

the electron mass and ε0 ' 8.8542× 10−12F/m is the electric permittivity in free
space (vacuum). Extraordinary waves (lower sign) can be typically associated to
right hand polarized EM signals such as those of GPS antennas, and most L and
S Band antennas that receive satellite signals.

For signals with frequencies ω >> ωp (and hence ω >> ωg) as for GNSS we may
expand (9.15) into a second-order Taylor approximation and retain only terms up
to f−4, similarly to the approach of Bassiri and Hajj (1993). The result is, see
(Datta-Barua et al. 2008) for a detailed discussion of several approximation ways
adopted by different authors:

np = 1− 1

2
X ± 1

2
XYL −

1

8
X2 − 1

4
X · Y 2(1 + cos2 θ) (9.18)

where Y 2 = Y 2
L +Y 2

T =
(ωg

ω

)2
and again upper sign represents ordinary wave, and

lower sign represents extraordinary wave.

The following explicit expression for np can be obtained for extraordinary EM
signals in terms of the main physical constants and parameters, after substituting
X, YL and YT from equations (9.16):

np = 1− q2

8π2meε0
· Ne
f2
− q3

16π3m2
eε0
· NeB cos θ

f3

− q4

128π4m2
eε

2
0

· N
2
e

f4
− q4

64π4m3
eε0
· NeB

2(1 + cos2 θ)

f4
(9.19)

Inserting equation (9.19) into (9.14) leads to the following ionospheric dependent
terms in the carrier phase, up to third (f−4) order:

δρI,p = − s1

f2
− s2

f3
− s3

f4
(9.20)

After substituting the physical constants, me, q, ε0, with 5 significant digits the
first, second and third order coefficients, s1, s2 and s3, read (note that the Inter-
national System of Physical Units (SI) is used, e.g. magnetic field is expressed in
Tesla):

s1 = 40.309

∫ ~rR

~rT

Nedl (9.21)

s2 = 1.1284 · 1012

∫ ~rR

~rT

NeB cos θdl (9.22)

s3 = 812.42

∫ ~rR

~rT

N2
e dl + 1.5793× 1022

∫ ~rR

~rT

NeB
2 (1 + cos2 θ

)
dl (9.23)

These expressions are fully equivalent for instance to Equations (2) to (5) in
Fritsche et al. (2005).

It can be seen in the last expressions (9.20) to (9.23) that the ionospheric delay
on the carrier phase is negative, indicating an increase of the phase velocity of the
EM transionospheric signal propagation.

In order to assess the importance of the different ionospheric terms for δρI,p in
Equation (9.20), we start with the first term, assuming a high value of Slant Total

Electron Content (STEC, see Section 9.4.2 for more details) of S =
∫ ~rR
~rT

Nedl ∼
300× 1016m−2:

δρI,p,1 = −40.309S

f2
∼ −1.2× 1020

f2
(9.24)

In this case we obtain a first ionospheric order term δρI,p,1 of up to several km of
delay for f ' 150 MHz (negative for the carrier phase), corresponding to the lower
frequency of the NIMS satellite system (U.S. Navy Ionospheric Measuring System,
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formerly TRANSIT), and of up to several tens of meters for f = 1575.42 MHz
(L1 GPS carrier frequency).

The relative importance of the first (δρI,p,1 = −s1/f
2), second (δρI,p,2 = −s2/f

3)
and third order terms (δρI,p,3 = −s3/f

4) also depends on the frequency. The
higher order terms are increasingly less important for increasing frequencies (e.g. for
VLBI frequencies compared to GPS frequencies). Indeed, from Equations (9.20)
to (9.23):

δρI,p,2
δρI,p,1

=
2.7994× 1010

f
·
∫ ~rR
~rT

NeB cos θdl∫ ~rR
~rT

Nedl
(9.25)

By taking typical values reflecting the order of magnitude of |B0 cos θ0| ' 104nT
at a given effective height to evaluate both integrals, the order of magnitude of
the ratio of second to first order ionospheric term can be approximated by:

δρI,p,2
δρI,p,1

' 2.7994× 1010

f
|B0 cos θ0| ∼

2.8× 105

f
(9.26)

The value of δρI,p,2 is thus typically only 1% of that of δρI,p,1 for f ' 150 MHz
(NIMS), and only 0.1% for f = 1575.42 MHz (GPS L1 carrier).

Similarly, the order of magnitude of the relative value between third and second
order ionospheric terms can be estimated as:

δρI,p,3
δρI,p,2

=
7.1998× 10−10

f
·

∫ ~rR
~rT

N2
e dl∫ ~rR

~rT
NeB cos θdl

+
1.3996× 1010

f
·
∫ ~rR
~rT

NeB
2
(
1 + cos2 θ

)
dl∫ ~rR

~rT
NeB cos θdl

(9.27)

Considering the typical values used above reflecting order of magnitude of |B0 cos θ0|
' 104nT at a given effective height to evaluate the integrals, an intermediate an-
gle of θ0 = 45 deg, and taking N0 ' 1012m−3 a raw order of magnitude value of
effective electron density fulfilling N0 ·

∫ ~rR
~rT

Nedl =
∫ ~rR
~rT

N2
e dl, we get the follow-

ing relative order of magnitude value between third and second order ionospheric
terms:

δρI,p,3
δρI,p,2

' 1

f

(
7.1998× 10−10 N0

|B0 cos θ0|
+ 1.3996× 1010 · 3

2
|B0 cos θ0|

)
∼ 7.2× 107 + 2.1× 105

f
(9.28)

The order of magnitude of the ratio between third and second order ionospheric
terms can thus be as high as about 50% for NIMS frequency f ' 150 MHz but
less than 10% for f = 1575.42 MHz, the L1 GPS carrier frequency.

Another conclusion from this approximation is that the second integral in (9.23)
can typically be neglected compared to the first integral depending only on the
electron density, as it is typically two orders of magnitude smaller, see Equa-
tion (9.28):

s3 ' 812

∫ ~rR

~rT

N2
e dl (9.29)

Finally, in order to show that third order ionospheric approximation should be
adequate for most of the radio astronomic-geodetic techniques, we can consider
the fourth order term δρI,p,4 in the carrier phase delay. It can be deduced in a
similar way as the first to third order terms, but now keeping the terms f−5 in
the Taylor expansion of Equation (9.15) in the corresponding fourth order term
δnp,4 of the carrier phase ionospheric refraction index term

δnp,4 = −1

2
XYL

(
X

2
+ Y 2

[
1 +

1

8
sin2 θ tan2 θ

])
(9.30)

139



N
o

.
3

6 IERS
Technical
Note

9 Models for atmospheric propagation delays

which is expressed with the same notation as in the previous expressions. Using
Equations (9.16) and (9.17) as well as Equation (9.14), the fourth order ionospheric
term in delay can be expressed as:

δρI,p,4 = − s4

f5
(9.31)

where

s4 =
q5

128π5me
3ε02

∫ ~rR

~rT

N2
eB cos θdl +

q5

64π5me
4ε0

∫ ~rR

~rT

NeB
3f(θ)dl (9.32)

and where f(θ) = cos θ
(
1 + 1

8
sin2 θ tan2 θ

)
. Substituting the values of the con-

stants we get:

s4 = 4.5481× 1013

∫ ~rR

~rT

N2
eB cos θdl+ 8.8413× 1032

∫ ~rR

~rT

NeB
3f(θ)dl (9.33)

Taking into account Equations (9.31), (9.33), (9.20) and (9.29), the ratio between
the fourth and third ionospheric order terms can be written as:

δρI,p,4
δρI,p,3

=
1

f

(
5.5982× 1010

∫ ~rR
~rT

N2
eB cos θdl∫ ~rR

~rT
N2
e dl

+ 1.0883× 1030

∫ ~rR
~rT

NeB
3f(θ)dl∫

~rR
N2
e dl

)
(9.34)

Taking into account the same approximations and typical values than before, the
ratio can be expressed as:

δρI,p,4
δρI,p,3

' 1

f

(
5.6× 1010|B0 cos θ0|+ 1.1× 1030 |B0 cos θ0|3f(θ0)

N0| cos3 θ0|

)
∼ 1

f

(
5.6× 105 + 2.3× 103) (9.35)

According to this expression the fourth order ionospheric term is only 1% of the
third order term for f ' 150 MHz (NIMS) and less than 0.1% for the L1 GPS
carrier at f = 1575.42 MHz. Another conclusion from this development is that
the fourth order term can be approximated by the first term in Equation (9.33):

s4 ' 4.55× 1013

∫ ~rR

~rT

N2
eB cos θdl (9.36)

Table 9.2 provides delays corresponding to ionospheric terms of different order
and different frequencies of interest in radio astronomic-geodetic research, with
the same approximations and particular values as above (|B0 cos θ0| ∼ 104nT ,
N0 ∼ 1012m−3 and S ∼ 3 × 1018m−2). It can be seen, taking as significant
threshold the delay value of 1mm, that:

• The first order ionospheric term, as expected, is significant for all the con-
sidered frequencies.

• The second order ionospheric term should be taken into account for all the
frequencies, except for the high VLBI frequency and those used for Ku band
time transfer.

• The third order ionospheric term should be taken into account in NIMS and
DORIS low frequencies. It is at the significance limit for GPS and high
DORIS frequencies and can be neglected for VLBI and time transfer Ku
band frequencies.

• The fourth order can be neglected, except for the very low NIMS frequency
of 150 MHz.

Ray bending effects on geometric path excess and ionospheric delay

Moreover the effect of the curvature (or bending) of the ray in terms of geometric
path excess can be considered as an additional correction ∆s3 (typically up to
few millimeters at low elevation for GPS frequencies), appearing as a f−4 depen-
dence too, which can be easily added to the s3 coefficient of Equation (9.47). In
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Table 9.2: Delays (in millimeters) corresponding to the first to fourth higher order ionospheric delay
terms (in columns) for a representative subset of typical frequencies used in radio astronomy and
geodesy: the values are based on typical values of |B0 cos θ0| ∼ 104 nT, θ0 = π/4, N0 = 1012m−3 and
S = 3× 1018m−2 (the values that can be typically neglected –those lower than 1 mm– can be clearly
identified by a negative exponent).

f / MHz Technique δρI,p,1 / mm δρI,p,2 / mm δρI,p,3 / mm δρI,p,4 / mm

150 NIMS −5.3 · 106 −9.9 · 103 −4.8 · 103 −1.8 · 101

400 NIMS / DORIS −7.5 · 105 −5.2 · 102 −9.4 · 101 −1.3 · 10−1

1228 GPS (L2) −8.0 · 104 −1.8 · 101 −1.1 · 100 −5.0 · 10−4

1575 GPS (L1) −4.8 · 104 −8.5 · 100 −3.9 · 10−1 −1.4 · 10−4

2000 DORIS −3.0 · 104 −4.2 · 100 −1.5 · 10−1 −4.2 · 10−5

2300 Low VLBI f. −2.3 · 104 −2.8 · 100 −8.8 · 10−2 −2.2 · 10−5

8400 High VLBI f. −1.7 · 103 −5.7 · 10−2 −4.9 · 10−4 −3.3 · 10−8

12000 Time trans. low Ku f. −8.3 · 102 −1.9 · 10−2 −1.1 · 10−4 −5.2 · 10−9

14000 Time trans. high Ku f. −6.1 · 102 −1.2 · 10−2 −6.2 · 10−5 −2.5 · 10−9

particular Jakowski et al. (1994) derived by ray tracing a simple expression for
GPS in which, with the above introduced notation, the coefficient of the f−4 term
approximating the bending effect is:

∆s3 ' 2.495× 108[(1− 0.8592 cos2 E]−1/2 − 1] · Ŝ2 (9.37)

where E is the spherical elevation, i.e. the complement of the zenith angle with
respect to the geocenter direction and where the units are not in SI system: the
STEC Ŝ in TECU=1016m−3, the elevation E in degrees and the factor ∆s3 in
mm·(MHz)4. This expression is a particular approximation for GPS of the general
results obtained for different frequencies. Details of the typical dependences for
other frequencies can be seen in Figure 9.1 for different levels of electron content
(8, 40 and 100 TECU) and different elevations (10, 25 and 50 degrees).

Recently Hoque and Jakowski (2008) proposed an update for this expresion tak-
ing into account the dependency not only on the STEC but also on the vertical
distribution of electron content (by considering the F2 layer scale and maximum
ionization heights, see Equation (23) in the given reference). But we retain Equa-
tion (9.37) for this document because, as the authors recognize in the same paper,
these parameters are not easily available in the practice.

As the ray bending depends on the carrier frequency, an additional effect on the
ionospheric correction appears when two different carriers are used, because the
STEC differs on the two paths. However, following Hoque and Jakowski (2008)
Equation (31), this effect is small (mm level at low elevation).

Effects on code pseudorange data

The corresponding effect can be computed for the code pseudorange measure-
ments, by using the well known relationship between phase and code refractive
indices, np and nc respectively, relating the phase velocity with the group (code)
velocity, see for instance Davies (1990) page 13:

nc = np + f
dnp
df

(9.38)

A similar relationship holds for the code and carrier phase ionospheric delays,
δρI,c and δρI,p, after introducing Equation (9.38) in Equation (9.14):

δρI,c = δρI,p + f
d

df
δρI,p (9.39)

Applying Equation (9.39) to Equation (9.20), the ionospheric effect on code iono-
spheric delay, up to third order term, is:

δρI,c =
s1

f2
+ 2

s2

f3
+ 3

s3

f4
(9.40)
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Figure 9.1: Results of ray-tracing calculations concerning the dependency of
the excess path length from the frequency of the propagation radio wave. At
frequencies below 600 MHz the calculations correspond to a satellite height
hs = 1000km (NIMS/NNSS, DORIS) whereas above 600 MHz the calcula-
tions correspond to a satellite height hs = 20000km (GPS, GLONASS) [Fig-
ure kindly provided by Dr. Norbert Jakowski, see Jakowski et al. (1994)]

It can be seen from this relationship, taking into account Equations (9.21), (9.22)
and (9.23), that the ionospheric delay on the code pseudorange is positive, as-
sociated to a decrease of the EM signal group velocity in the transionospheric
propagation.

9.4.2 Correcting the ionospheric effects on code and phase

The most efficient way of correcting the ionospheric effects is by combining simul-
taneous measurements in k different frequencies, which allows to cancel the iono-
spheric effects up to order k − 1, taking into account Equations (9.20) and (9.40)
for carrier phase and code, respectively. A well know example is the case of the
actual GPS system with two frequencies, which allows to cancel out the first or-
der ionospheric effect by the so called ionospheric-free combination of observables
(see below). And in the future, with Galileo and modernized GPS systems (broad-
casting at three frequencies), the full correction can be extended to second order
ionospheric terms too.

Correcting the ionospheric term for single frequency users

If the user is only able to gather measurements at a single frequency f , then
his main problem is to correct as much as possible (or at least mitigate) the
first order ionospheric terms in phase and code measurements, δρI,p,1 (9.20) and
δρI,c,1 (9.40), which account for more than 99.9% of the total ionospheric delays,
as we have shown above. Following (9.21) the first order ionospheric terms are

only dependent on the Slant Total Electron Content S =
∫ ~rR
~rT

Nedl and the signal
frequency:

δρI,p,1 = −40.309 S
f2

δρI,c,1 = +40.309 S
f2

 (9.41)
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Taking into account this expression, the single frequency users with available phase
and code measurements at frequency fa, and not interested on precise positioning,
can use as main observable the so called Graphic combination Ga = 1

2

(
ρac + ρap

)
.

In this way the I1 ionospheric delay is completely removed at the price of having an
observable with the half part of the code thermal and multipath noise, maintaining
as additional unknown the carrier phase ambiguity for each continuous arc of phase
data. However the graphic combination can be convenient for real-time users with
relatively low requirements of accuracy, in conditions of maximum solar activity
and/or low latitude and daylight time or strong ionospheric storms scenarios.

On the other hand, there are different available external sources for the STEC S,
which allow to directly correct the single frequency observables. Many of them
provide the vertically integrated ionospheric free electron density, the so called
Vertical Total Electron Content (VTEC), globally or at least at regional scale.

From the VTEC values (V ) corresponding to the observation time, the STEC
S can be estimated thanks to a factor approximating the conversion from the
vertical to the slant Total Electron Content: the so called ionospheric mapping
function, M , by S = M · V .

Typically a thin shell spherical layer model, at a fixed effective ionospheric height
h, is applied:

M =
1√

1− r2 cos2 E
(r+h)2

(9.42)

where r and E are the geocentric distance and ray spherical elevation taken from
the user receiver. In the case of IGS the adopted effective height is h = 450km.
This approximation can introduce significant errors as well, of 5% or more, spe-
cially when the 3D nature of the electron density distribution Ne has a larger
impact on the integrated (total electron content) values: at low elevation or low
latitude observations, see for instance Hernández-Pajares et al. (2005). Other
better approximations are possible, as Modified Single Mapping Function (Hugen-
tobler et al. 2002), variable effective height, see Komjathy and Langley (1996)
and Hernández-Pajares et al. (2005) or multilayer tomographic model, see for
instance Hernández-Pajares et al. (2002).

Some common sources of electron content are:

• Global VTEC maps, such as those computed by the International GNSS
Service (IGS) <5> from a global network of dual-frequency receivers. The
user can compute its STEC, S, from interpolating the VTEC maps and
applying the corresponding mapping function given by Equation (9.42) with
h = 450km in IGS IONEX format, see Schaer et al. (1998). The IGS VTEC
maps have typically errors of 10 to 20%, see for instance Hernández-Pajares
(2004) and Orús et al. (2002).

• Predicted VTEC models such as those used by GNSS: Klobuchar model
broadcasted in GPS navigation message, or NeQuick <6> for the future
Galileo system. They can show average errors up to 50% (up to 30% at
low latitude, see for instance Orús et al. (2002) or Aragón et al. (2004).
Moreover predicted Global VTEC maps are available from IGS center CODE
server <7>.

• Regional VTEC models, which provide better accuracy by means of a better
temporal and spatial resolution, thanks to the availability of dense networks
of permanent receivers (e.g. for Japan, Europe or USA).

• Empirical standard models of the Ionosphere, based on all available data
sources, such as the International Reference Ionosphere (IRI, Bilitza 1990)
available at <8> or PIM (Daniell et al. 1995) available at <9>. If they

5ftp://cddisa.gsfc.nasa.gov/pub/gps/products/ionex/
6http://www.itu.int/ITU-R/study-groups/software/rsg3-p531-electron-density.zip
7ftp://ftp.unibe.ch/aiub/CODE
8http://modelweb.gsfc.nasa.gov/ionos/iri.html
9http://www.cpi.com/products/pim/pim.html
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are adjusted to the actual conditions by means of one or several parameters,
such as the Sun Spot Number (Bilitza et al. 1999), these empirical models
can provide at least similar performance than predicted VTEC models for
GNSS. Otherwise the performance can be poor, depending on the region and
time.

Correcting the ionospheric term for dual frequency users In case the user
is able to gather two simultaneous measurements at two frequencies, fa and fb, the
situation is much better, because the first order term can be cancelled, elliminating
more than 99.9% of the total ionospheric delay. The first-order-ionospheric-free
combination ρ

(1)
p is defined by the weight factors f2

a and −f2
b as

ρ(1)
p (a, b) =

f2
aρ

(a)
p − f2

b ρ
(b)
p

f2
a − f2

b

. (9.43)

If the measurements at the two frequencies are not exactly simultaneous, with
a time offset small enough to consider that the electron content does not vary
between the two measurements, the linear combination can still be applied but it
is necessary to account for the time offset10.

The first-order-ionospheric-free combination leads to the following new ionospheric
dependencies, for carrier phase and code (δρ

(1)
I,p and δρ

(1)
I,c respectively), after con-

sidering Equations (9.20) and (9.40):

δρ
(1)
I,p =

f2
aδρ

(a)
I,p − f

2
b δρ

(b)
I,p

f2
a − f2

b

=
s2

fafb(fa + fb)
+

s3

f2
af

2
b

(9.44)

δρ
(1)
I,c =

f2
aδρ

(a)
I,c − f

2
b δρ

(b)
I,c

f2
a − f2

b

= − 2s2

fafb(fa + fb)
− 3s3

f2
af

2
b

(9.45)

where s2 and s3 depend on electron density Ne and magnetic field ~B, according
to expressions (9.22) and (9.29). The following approximations can be done to
facilitate the computations:

s2 = 1.1284× 1012

∫ ~rR

~rT

NeB cos θdl ' 1.1284× 1012Bp cos θp · S (9.46)

where Bp and θp are the magnetic field modulus and projecting angle with respect
to the propagation direction, at an effective pierce point p, and S is the integrated
electron density, or STEC S. This approximation is used by Kedar et al. (2003)
and Petrie et al. (2010), and in other references cited above.

For this equation, a source of magnetic field is needed, which should be more
realistic than the dipolar one, such as the International Magnetic Reference Field
(IMRF) available at <11> or the Comprehensive Model 12 available at <13> ,
to reduce errors of up to more than 60% in certain regions, see a discussion in
Hernández-Pajares et al. (2007). Both models are provided as Fortran routines:
the IMRF model is provided with a short description of the arguments as the
subroutine igrf10syn in the file igrf10.f at <11>. The Comprehensive Model CM4
is provided with a complete description of the arguments as cm4field.f at <13>.

The third order coefficient can be approximated in terms of the maximum electron
density along the ray path Nm:

s3 ' 812

∫ ~rR

~rT

N2
e dl ' 812ηNmS (9.47)

10For example, in some of the Doris instruments, the difference between the two measurement times ta and tb can
reach 20 microseconds. In this case, it can be shown (Mercier, 2009) that it is sufficient to consider that the linear
combination (9.43) should be considered as a measurement taken at the epoch t(1) = (f2

a ta − f2
b tb)/(f

2
a − f2

b ).
11http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
12This model provides different components of the magnetic field besides the main field generated by sources inside

the Earth. The external field is caused by charged particle currents in the space around it, primarily in the ionosphere.
A calculation of the contribution of these currents to the total magnetic field within the ionosphere has suggested that
it is almost two orders of magnitude smaller than that of the main field there, even under geomagnetic storm conditions.
If so, the external field can be neglected when computing the second order ionospheric correction.

13http://core2.gsfc.nasa.gov/CM/
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We may take η ' 0.66 and Nm can be expressed as function of the slab thickness
H (which can be modelled as function on the latitude and local time) and the
VTEC V , see more details in Fritsche et al. (2005) and references therein.

These expressions typically lead for GPS to values of up to few centimeters for
the second order ionospheric correction: for instance δρ

(1)
I,p ' 2 cm for a given

observation with high STEC values (such as S ' 300 TECU = 3× 1018 m−3) and
magnetic field projection of B cos θ ' 3× 104nT .

Moreover the geometric path excess produced by the ray curvature (or bending)
can be considered as an additional term depending on f−4, for instance using
expression (9.37).

Then, to evaluate δρ
(1)
I,p and δρ

(1)
I,c we need as well an STEC source for S, as in the

case of single frequency users (see previous subsection). In this case, the double
frequency measurements can be used, to provide a direct estimate of S, from the
first order term which contains more than 99.9% of it. For instance in GPS S can
be estimated from the ionospheric (geometry-free) combination of carrier phases
LI = L1 − L2 and codes PI = P2 − P1, where Li and Pi are the carrier phase
and code measurements for carrier frequency fi, in length units. Indeed, writing
LI

14 and PI in terms of the corresponding BI term (which includes the carrier
phase ambiguity and the interfrequency phase biases) and interfrequency delay
code biases (DCBs) for receiver and transmitter D and D′:

LI = αS +BI , PI = αS +D +D′, (9.48)

where α = 40.309 · (f−2
2 −f−2

1 ) ' 1.05 ·10−17m3, the STEC S can be estimated as
S = (LI− < LI −PI > −D−D′)/α, where < · > is the average along a carrier
phase continuous arc of transmitter-receiver data with no phase cycle-slips. This
way of computing the STEC has certain advantages, specially when no external
sources of STEC are available (such as in real-time conditions) or at low latitudes
and elevations, see Hernández-Pajares et al. (2007) for corresponding discussion.

Equations (9.44) to (9.47), with an adequate source of STEC and magnetic field
(see above) provide a conventional method to correct the ionospheric higher order
terms for dual frequency users.

An alternative approach to correcting the GPS measurements is to apply the
second order ionospheric correction by means of redefining the first-order iono-
spheric free combination of observables (Brunner and Gu 1991), for instance in
terms of the line-of-sight magnetic field projection term 15. This approach has
the disadvantage of producing a time dependent carrier phase bias. More details
on pros and cons of different approaches for higher order ionospheric corrections,
including regional models such as Hoque and Jakowski (2007), can be found in
Hernández-Pajares et al. (2008).

In the case of DORIS instruments, the measurements are directly the phase vari-
ations between successive epochs (intervals of 7 or 10 seconds). They can be pro-
cessed using the time-differenced first-order-ionospheric-free combination (9.43).
For example, for ionospheric studies, this leads to a differential VTEC. VTEC may
be deduced with an iterative process (Fleury and Lassudrie, 1992, Li and Parrot,
2007). For the recent instruments (Jason 2 and after), the undifferenced phase
and pseudo-range measurements are also available. The pseudo-range measure-
ments are only used to synchronize the on-board oscillator in order to estimate
with a sufficient accuracy the measurement time. The first order ionospheric effect
can also be removed here using the corresponding combination. For higher order
terms, it possible to use as corrections for Doppler the time differences of those for
the carrier phase, calculated using the equations for phase given above. But some
caution is necessary for DORIS, where the second order effect on the equivalent

14The wind-up or transmitter-to-receiver antennas rotation angle, is not explicitely written here due its typical small
amount -up to less than about 1% of STEC in GPS for example-.

15From Equation (9.48) and the definition of the first-order ionospheric free combination of carrier phases Lc ≡
(f2

1L1 − f2
2L2)/(f2

1 − f2
2 ) = ρ?+Bc (where ρ? contains the frequency independent terms –including geometric distance,

clock errors and tropospheric delay– and Bc the carrier phase bias), an apparently first and second order iono free
combination of carrier phases can be easily derived L′c = ρ? + B′c, where L′c = Lc − s2LI/(f1f2(f1 + f2)) and B′c =
Bc − s2BI/(f1f2(f1 + f2)) are the new combination of observables and time-varying carrier phase bias, respectively.
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carrier phase is several times larger than for GPS, on account of the different
choice of frequencies. The errors made in the phase correction, and therefore, in
the time-differenced phase correction, will be larger. It is not necessary to apply
these corrections on the code measurements because the required precision for
synchronisation is not so high as for phase processing.

Correcting the ionospheric term for multi (three or more)-frequency
users

GNSS systems offering simultaneous observations in 3 or more frequencies should
be available soon. Thence, in principle, it should be possible to cancel, from these
k simultaneous observations of the same transmitter-receiver pair, up to the first
k − 1 ionospheric order terms.

As an example, and from Equation (9.43) applied to two pairs of three consecutive
frequencies (fa, fb and fc), is possible to define a combination of carrier phase

observables that is first and second order ionospheric free, ρ
(2)
p :

ρ(2)
p =

fafb(fa + fb)ρ
(1)
p (a, b)− fbfc(fb + fc)ρ

(1)
p (b, c)

fafb(fa + fb)− fbfc(fb + fc)
(9.49)

And in terms of the basic observables, given by Equation (9.43), it can be written
as:

ρ(2)
p =

1

fa + fb + fc

(
f3
aρ

(a)
p

(fa − fb)(fa − fc)
+

f3
b ρ

(b)
p

(fb − fa)(fb − fc)
+

f3
c ρ

(c)
p

(fc − fa)(fc − fb)

)
(9.50)

From here and from Equation (9.44) the following remaining higher order iono-
spheric dependence can be deduced:

δρ
(2)
I,p =

s3

fafc(f2
b + fb[fa + fc])

(9.51)

A similar definition to Equation (9.49) can be derived for the code observations
resulting, by using Equation (9.45), in the following remaining higher order iono-
spheric dependency:

δρ
(2)
I,c =

−2s3

fafc(f2
b + fb[fa + fc])

(9.52)

However it must be pointed out that the combination significantly increases the
measurement noise. Indeed, from Equation (9.50), considering a simple hypothesis
of gaussian independent and identical gaussian distribution for the measurement
noise at different frequencies, it is easy to show that the increase of measurement
noise is very important (e.g. 25x in Galileo E1, E6, E5 frequencies, 34x in GPS
L1, L2, L5, 52x in Galileo E1, E5a, E5b).
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Technology, Göteborg, Sweden.

International Union of Geodesy and Geophysics (IUGG), 1999, “Resolution 3
of the International Association of Geodesy,” Comptes Rendus of the XXII
General Assembly, 19–30 July 1999, Birmingham, pp. 110–111.

Jakowski, N., Porsch, F., and Mayer, G., 1994, “Ionosphere-induced ray-path
bending effects in precision satellite positioning systems,” Zeitschrift für
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10 General relativistic models for space-time coordinates and

equations of motion

10.1 Time coordinates

IAU resolution A4 (1991) set the framework presently used to define the Barycen-
tric Reference System (BRS) and the Geocentric Reference System (GRS). Its
third recommendation defined Barycentric Coordinate Time (TCB) and Geocen-
tric Coordinate Time (TCG) as time coordinates of the BRS and GRS, respec-
tively. In the fourth recommendation another time coordinate is defined for the
GRS, namely Terrestrial Time (TT). This framework was further refined by the
IAU Resolutions B1.3 and B1.4 (2000) to provide consistent definitions for the co-
ordinates and the metric tensor of the reference systems at the full post-Newtonian
level (Soffel, 2000). The BRS was renamed Barycentric Celestial Reference Sys-
tem (BCRS) and the GRS was renamed Geocentric Celestial Reference System
(GCRS). At the same time IAU Resolution B1.5 (2000) applied this framework to
time coordinates and time transformations between reference systems, and IAU
Resolution B1.9 (2000) re-defined Terrestrial Time (Petit, 2000). TT differs from
TCG by a constant rate, dTT/dTCG = 1−LG, where LG = 6.969290134×10−10

is a defining constant (see Chapter 1 Table 1.1). The value of LG has been chosen
to provide continuity with the former definition of TT, i.e. that the unit of mea-
surement of TT agrees with the SI second on the geoid. The difference between
TCG and TT is equal to

TCG− TT =

(
LG

1− LG

)
× (JDTT − T0)× 86400 s, (10.1)

where JDTT is the TT Julian date and T0 = 2443144.5003725. To within 10−18

in rate, it may be approximated as TCG− TT = LG× (MJD−43144.0)×86400 s
where MJD refers to the modified Julian date of International Atomic Time (TAI).
TAI is a realization of TT, apart from a constant offset: TT = TAI + 32.184 s.

Before 1991, previous IAU definitions of the time coordinates in the barycen-
tric and geocentric frames required that only periodic differences exist between
Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT; Ka-
plan, 1981). As a consequence, the spatial coordinates in the barycentric frame
had to be rescaled to keep the speed of light unchanged between the barycentric
and the geocentric frames (Misner, 1982; Hellings, 1986). In these systems, a
quantity with the dimension of time or length has a TDB-compatible value which
differs from its TDT-compatible value by a scale (see also Chapter 1). This is no
longer required with the use of the TCG/TCB time scales.

The relation between TCB and TDB is linear, but no precise definition of TDB
had been provided by the IAU. In the IERS Conventions (2003) the relation was
given in seconds by

TCB− TDB = LB×(MJD−43144.0)×86400 s+P0, P0 ≈ 6.55×10−5s, (10.2)

with the provision that no definitive value of LB exists and such an expression
should be used with caution.

In order to remove this ambiguity while keeping consistency with the time scale
(formerly known as Teph) used in the Jet Propulsion Laboratory (JPL) solar-
system ephemerides (see Chapter 3) and with existing TDB implementations such
as (Fairhead and Bretagnon, 1990), IAU Resolution B3 (2006) was passed to re-
define TDB as the following linear transformation of TCB:

TDB = TCB− LB × (JDTCB − T0)× 86400 s + TDB0, (10.3)

where JDTCB is the TCB Julian date and where LB = 1.550519768 × 10−8 and
TDB0 = −6.55× 10−5s are defining constants (see Chapter 1 Table 1.1).

Figure 10.1 shows graphically the relationships between the time scales. See <1>
for copies of the resolutions of the IAU General Assemblies (1991, 2000, 2006)

1http://www.iau.org/administration/resolutions/general assemblies/
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relating to reference systems and time coordinates. IAU Resolution A4 (1991)
may also be found in IERS Technical Note 13, pp. 137–142, IAU Resolutions B1
and B2 (2000) in IERS Technical Note 32, pp. 117–126, and Resolutions of the
26th IAU General Assembly (2006) in Appendix A of this document.

TCB oo 4-dimensional transformation: Eqs.(10.4)-(10.5) //
OO

fixed rate Eq.(10.3)

��

ff

&&

TCG
OO

fixed rate Eq.(10.1)

��

proper time τ

xx

Eqs. (10.6)-(10.7)

88

ff

Eqs.(10.8)-(10.9)

&&

88

xx
TDB oo

4-dimensional transformation
// TT

Figure 10.1: Various relativistic time scales and their relations. Each of the coordinate time scales
TCB, TCG, TT and TDB can be related to the proper time τ of an observer, provided
that the trajectory of the observer in the BCRS and/or GCRS is known. Transformations
shown as dashed lines are not explicitly described in this document.

The difference between Barycentric Coordinate Time (TCB) and Geocentric Co-
ordinate Time (TCG) for any event (TCB, ~x) in the barycentric frame involves
a four-dimensional transformation,

TCB− TCG = c−2

{∫ t

t0

[
v2
e

2
+ Uext(~xe)]dt+ ~ve · (~x− ~xe)

}
+O(c−4), (10.4)

where ~xe and ~ve denote the barycentric position and velocity of the Earth’s center
of mass, and Uext is the Newtonian potential of all of the solar system bodies
apart from the Earth evaluated at the geocenter. In this formula, t is TCB and
t0 is chosen to be consistent with 1977 January 1, 0h0m0s TAI, i.e. the value
T0 = 2443144.5003725 given above. Terms not specified in (10.4) are of order
10−16 in rate, and IAU Resolution B1.5 (2000) provides formulas to compute the
O(c−4) terms and Equation (10.4) within given uncertainty limits up to 50000 km
from the Earth.

The TCB−TCG formula (10.4) may be expressed as

TCB− TCG =
LC × (TT − T0) + P (TT )− P (T0)

1− LB
+ c−2 ~ve · (~x− ~xe) (10.5)

where the values of LC and LB may be found in Chapter 1 Table 1.1. Non-linear
terms denoted by P (TT ) have a maximum amplitude of around 1.6 ms.

Any of the recent solar system ephemerides mentioned in Chapter 3 could be
numerically integrated to obtain a realization of Equation (10.4) with ns accuracy,
see e.g. (Fienga et al., 2009) for INPOP08. For consistency with past versions of
this document, we provide in the following different realizations of Equation (10.5):

• The terms P (TT )− P (T0) may be provided by a numerical time ephemeris
such as TE405 (Irwin and Fukushima, 1999), with an accuracy of 0.1 ns from
1600 to 2200. TE405 is available in a Chebyshev form at <2> and at the
IERS Conventions Center website <3>. A similar product for the INPOP08
ephemeris (Fienga et al., 2009) is available at <4>.

• The terms P (TT ) can be evaluated by the “FB” analytical model (Fair-
head and Bretagnon, 1990; Bretagnon 2001). The 2001 version of the FB

2ftp://astroftp.phys.uvic.ca/pub/irwin/tephemeris
3ftp://tai.bipm.org/iers/conv2010/chapter10/software/
4http://www.imcce.fr/inpop/
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model is available at the IERS Conventions Center website <3> or <5>,
where the files of interest are fb2001.f, fb2001.dat, fb2001.in, fb2001.out, and
README.fb2001.f. The SOFA (Standards of Fundamental Astronomy) ser-
vice <6> also provides a routine iau DTDB in both Fortran 77 and ANSI
C to perform the computation, based on a less accurate version of the FB
model.

• A series, HF2002, providing the value of LC × (TT − T0) + P (TT )− P (T0)
as a function of TT over the years 1600–2200 has been fit (Harada and
Fukushima, 2002) to TE405. The HF2002 model is available at the IERS
Conventions Center website <3>, where the files of interest are xhf2002.f,
HF2002.DAT and xhf2002.out (However, see below the updated version
XHF2002 IERS.F).

Note that TE405 is an integration of Equation (10.4) and does not account for
terms in c−4, and neither does HF2002 which was fit to TE405. On the other hand,
the LC value provided in Chapter 1 Table 1.1 includes a 1.15×10−16 contribution
from terms in c−4 and from the effect of asteroids. For best accuracy, the linear
term 1.15×10−16× (TT −T0) should be added to the original TE405 and HF2002
results. For convenience, a version XHF2002 IERS.F is provided at <3>, that
directly provides the correct result of Equation (10.5) based on HF2002 and can
be considered as the conventional TCB-TCG transformation.

Irwin (2003) has shown that TE405 and the 2001 version of the FB model differ by
less than 15 ns over the years 1600 to 2200 and by only a few ns over several decades
around the present time. HF2002 has been shown (Harada and Fukushima, 2002)
to differ from TE405 by less than 3 ns over the years 1600–2200 with an RMS error
of 0.5 ns. Note that in this section TT is assumed to be the time argument for
computing TCB−TCG, while the actual time argument is that of the underlying
solar-system ephemerides, i.e. a realization of TDB (see Chapter 3). The resulting
error in TCB−TCG is at most approximately 20 ps.

10.2 Transformation between proper time and coordinate time in the vicin-
ity of the Earth

Similarly to the time coordinate transformation, the formalism of the IAU reso-
lutions is used to provide the transformation between the proper time of a clock
and coordinate time. Formulas and references are presented here to perform this
transformation in the vicinity of the Earth (typically up to geosynchronous orbit
or slightly above). Evaluating the contributions of the higher order terms in the
metric of the geocentric reference system (see IAU Resolution B1.3 (2000)), it is
found that the IAU 1991 framework is sufficient for time and frequency applica-
tions in the GCRS in light of present clock accuracies. Nevertheless, in applying
the IAU 1991 formalism, some care needs to be taken when evaluating the Earth’s
potential at the location of the clock, especially when accuracy of order 10−18 is
required (Klioner, 1992; Wolf and Petit, 1995; Petit and Wolf, 1997; Soffel et al.,
2003).

In this framework, the proper time of a clock A located at the GCRS coordinate
position xA(t), and moving with the coordinate velocity vA = dxA/dt, where t is
TCG, is

dτA
dt

= 1− 1/c2
[
v2
A/2 + UE(xA) + V (XA)− V (XE)− xiA∂iV (XE)

]
. (10.6)

Here, UE denotes the Newtonian potential of the Earth at the position xA of the
clock in the geocentric frame, and V is the sum of the Newtonian potentials of
the other bodies (mainly the Sun and the Moon) computed at a location X in
barycentric coordinates, either at the position XE of the Earth’s center of mass,
or at the clock location XA. Only terms required for frequency transfer with

5ftp://maia.usno.navy.mil/conv2010/chapter10/software
6http://www.iausofa.org/
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uncertainty of order 10−18 have been kept. For application to a given experiment,
one should also consider the time amplitude of terms in Equation (10.6) that
happen to be periodic and compare those terms to the expected time accuracy of
the measurements. For example, the contribution of tidal terms (the last three
terms in Equation (10.6)) will be limited to below 1 × 10−15 in frequency and
a few ps in time amplitude up to the GPS orbit. In such cases, one can keep
only the first three terms in relation (10.6) between the proper time τA and the
coordinate time t:

dτA
dt

= 1− 1/c2
[
v2
A/2 + UE(xA)

]
. (10.7)

When using TT as coordinate time, following its defining relation dTT/dTCG =
1− LG, equations (10.6) and (10.7) are rewritten with the same accuracy as

dτA
dTT

= 1+LG−1/c2
[
v2
A/2 + UE(xA) + V (XA)− V (XE)− xiA∂iV (XE)

]
(10.8)

and

dτA
dTT

= 1 + LG − 1/c2
[
v2
A/2 + UE(xA)

]
, (10.9)

respectively. In general, the relation between the proper time of a clock and
coordinate time may be obtained by numerical integration of the adequate differ-
ential equation (10.6 to 10.9). In doing so, care should be taken to evaluate the
Newtonian potential UE with the uncertainty required by each use.

For GPS satellites, with nearly circular orbits at an altitude of approximately
20200 km, the combined relativistic frequency shift given by Equation (10.9) is
about 4.5×10−10 and it consists of a constant offset of about 4.46×10−10 and peri-
odical variations with amplitudes up to 10−11. The constant relativistic frequency
offset is nearly compensated simply by proportionally offsetting the nominal fre-
quency of all GPS satellite frequency standards by a conventional hardware offset
of −4.4647 × 10−10. However, due to differences of mean orbit altitudes of GPS
satellites, the actual relativistic frequency offsets for individual satellites can differ
from the above conventional hardware offset by up to 10−13.

When retaining only the first term of the Newtonian potential, assuming a Kep-
lerian orbit and that the constant relativistic offset is exactly compensated, inte-
grating Equation (10.9) yields

TT = τA −∆τperA , ∆τperA = − 2

c2

√
a ·GM⊕ · e · sinE, (10.10)

where a, e and E are the orbit semi-major axis, eccentricity and eccentric anomaly
angle. Thus ∆τperA is the conventional GPS correction (see the GPS Interface Con-
trol Document available at <7>) for the periodical relativity part, which is equally
due to eccentricity induced velocity and potential variations in Equation (10.9).
From the above equation, one can readily see that the amplitude of the periodical
correction is proportional to the orbit eccentricity, i.e. equal to about 2.29µs× e.
Since the eccentricity e for GPS orbits can reach up to 0.02, consequently the
amplitude of ∆τperA can reach up to 46 ns. An alternative expression for the
relativistic periodic correction is

∆τperA = − 2

c2
vA · xA, (10.11)

which is exactly equivalent to the preceding Keplerian orbit formulation, provided
that the osculating Keplerian orbit elements are used. This formulation is used
e.g. by the IGS (International GNSS Service) for its official GPS and GLONASS
clock solution products.

7http://www.navcen.uscg.gov/pdf/IS-GPS-200D.pdf
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By retaining also the oblateness term (J2) of the potential, one can derive (Ashby,
2003; Kouba, 2004) a simple analytical approximation that contains an apparent
relativistic clock rate 8 and a 6-h term due to J2. Comparing to a complete nu-
merical integration, Kouba (2004) finds that the conventional periodic relativistic
correction (10.11) differs by periodic terms with amplitudes of about 0.1 and 0.2
ns, and periods of about 6 hours and 14 days, respectively, and that, for most of
the new (Block IIR) GPS satellites, the 6-h term is already detectable by statis-
tical analysis in the recent IGS final clock combinations. The deficiencies of the
conventional relativistic correction (10.10, 10.11) will become even more signifi-
cant for Galileo (see the Galileo Interface Control Document available at <9>) as
the frequency instability of the Galileo passive Hydrogen maser clocks is at a few
parts in 1015 for an averaging time of several hours (Droz et al., 2009). As the
6-h J2 term is of similar magnitude, it should be accounted for when determining
and using the broadcast satellite clock model.

For low Earth orbit satellites (see e.g. Larson et al., 2007 for GRACE and TOPEX),
the term in J2 is more important than at the GPS altitude so that Equation (10.11)
may be significantly in error or even completely misleading. It is necessary to
perform a numerical integration of Equation (10.9) using the term in J2 for the
potential.

10.3 Equations of motion for an artificial Earth satellite10

The relativistic treatment of the near-Earth satellite orbit determination problem
includes corrections to the equations of motion, the time transformations, and
the measurement model. The two coordinate systems generally used when in-
cluding relativity in near-Earth orbit determination solutions are the solar system
barycentric frame of reference (BCRS) and the geocentric or Earth-centered frame
of reference (GCRS), see Section 5.1.

Ashby and Bertotti (1986) constructed a locally inertial E-frame in the neigh-
borhood of the gravitating Earth and demonstrated that the gravitational effects
of the Sun, Moon, and other planets are basically reduced to their tidal forces,
with very small relativistic corrections. Thus the main relativistic effects on a
near-Earth satellite are those described by the Schwarzschild field of the Earth
itself. This result makes the geocentric frame more suitable for describing the
motion of a near-Earth satellite (Ries et al., 1989). Later on, two advanced rel-
ativistic formalisms have been elaborated to treat the problem of astronomical
reference systems in the first post-Newtonian approximation of general relativ-
ity. One formalism is due to Brumberg and Kopeikin (Kopeikin, 1988; Brumberg
and Kopeikin, 1989; Brumberg, 1991) and another one is due to Damour, Soffel
and Xu (Damour, Soffel, Xu, 1991, 1992, 1993, 1994). These allow a full post-
Newtonian treatment (Soffel, 2000) and form the basis of IAU Resolutions B1.3
and B1.4 (2000).

In the GCRS, the relativistic correction to the acceleration of an artificial Earth
satellite is

∆~̈r = GME
c2r3

{[
2(β + γ)GME

r
− γ~̇r · ~̇r

]
~r + 2(1 + γ)(~r · ~̇r)~̇r

}
+

(1 + γ)GME
c2r3

[
3
r2

(~r × ~̇r)(~r · ~J) + (~̇r × ~J)

]
+{

(1 + 2γ)

[
~̇R×

(
−GMS

~R
c2R3

)]
× ~̇r
}
,

(10.12)

where

8Equation (28) in (Kouba, 2004) has a sign error for the (J2) rate term. The correct expression may be found in
Equation (85) of (Ashby, 2003).

9http://ec.europa.eu/enterprise/policies/satnav/galileo/open-service/
10The IAU Resolutions B1.3 and B1.4 (2000) and references therein now provide a consistent framework for the defi-

nition of the geocentric and barycentric reference systems at the full post-Newtonian level using harmonic coordinates.
The equations of motion for spherically-symmetric and uniformly rotating bodies in these systems are the same as those
previously derived in a Parameterized Post-Newtonian system.
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c = speed of light,

β, γ = PPN (parameterized post-Newtonian) parameters, equal to 1 in General

Relativity,

~r is the position of the satellite with respect to the Earth,

~R is the position of the Earth with respect to the Sun,

~J is the Earth’s angular momentum per unit mass

(| ~J | ∼= 9.8× 108m2/s), and

GME and GMS are the gravitational coefficients of the Earth and

Sun, respectively.

For satellites in the vicinity of the Earth (up to geostationary orbit) the terms
in Equation (10.12) can be evaluated with respect to the main Newtonian accel-
eration, as follows. The Schwarzschild terms (first line) are a few parts in 1010

(high orbits) to 109 (low orbits) smaller; the effects of Lense-Thirring precession
(frame-dragging, second line) and the geodesic (de Sitter) precession (third line)
are about 1011 to 1012 smaller. The main effect of the Schwarzschild terms is a
secular shift in the argument of perigee while the Lense-Thirring and de Sitter
terms cause a precession of the orbital plane at a rate of the order of 0.8 mas/y
(geostationary) to 180 mas/y (low orbit) for Lense-Thirring and 19 mas/y (inde-
pendent of orbit height) for de Sitter. The Lense-Thirring terms are less important
than the geodesic terms for orbits higher than Lageos (altitude above 6000 km)
and more important for orbits lower than Lageos. The observable effects and their
magnitude depend on the particular characteristics of each satellite orbit and on
the set-up of the analysis software. E.g., neglecting the Schwarzschild terms while
adjusting orbit parameters may cause an apparent reduction of the orbit radius
by 4 mm for circular orbits at all heights (Hugentobler, 2008).

The relativistic effects of the Earth’s oblateness have been neglected here as they
are typically even smaller but, if necessary, they could be included using the
full post-Newtonian framework of IAU Resolutions B1.3 and B1.4 (2000). The
independent variable of the satellite equations of motion may be, depending on
the time transformation being used, either TT or TCG. Although the distinction
is not essential to compute this relativistic correction, it is important to account
for it properly in the Newtonian part of the acceleration.

10.4 Equations of motion in the barycentric frame (see footnote 10)

The n-body equations of motion for the solar system frame of reference (the
isotropic Parameterized Post-Newtonian system with Barycentric Coordinate
Time (TCB) as the time coordinate) are required to describe the dynamics of
the solar system and artificial probes moving about the solar system (for exam-
ple, see Moyer, 1971). These are the equations applied to the Moon’s motion for
lunar laser ranging (Newhall et al., 1987). In addition, relativistic corrections to
the laser range measurement, the data timing, and the station coordinates are
required (see Chapter 11).
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11 General relativistic models for propagation

11.1 VLBI time delay

11.1.1 Historical background

To resolve differences between numerous procedures used in the 1980s to model
the VLBI delay, and to arrive at a standard model, a workshop was held at the
U. S. Naval Observatory on 12 October 1990. The proceedings of this workshop
have been published (Eubanks, 1991) and the model given there was called the
‘consensus model.’ It was derived from a combination of five different relativistic
models for the geodetic delay. These are the Masterfit/MODEST model, due
to Fanselow and Thomas (see Treuhaft and Thomas, in Eubanks, 1991; Sovers
and Fanselow, 1987), the I. I. Shapiro model (see Ryan, in Eubanks, 1991), the
Hellings-Shahid-Saless model (Shahid-Saless et al., 1991, and in Eubanks, 1991),
the Soffel, Müller, Wu and Xu model (Soffel et al., 1991, and in Eubanks, 1991),
and the Zhu-Groten model (Zhu and Groten, 1988, and in Eubanks, 1991). At
the same epoch, a relativistic model of VLBI observations was also presented in
Kopeikin (1990) and in Klioner (1991).

The ‘consensus model’ formed the basis of that proposed in the IERS Standards
(McCarthy, 1992). Over the years, there was considerable discussion and misun-
derstanding on the interpretation of the stations’ coordinates obtained from the
VLBI analyses. Particularly the IERS Conventions (McCarthy, 1996) proposed a
modification of the delay, erroneously intending to comply with the XXIst General
Assembly of the International Astronomical Union in 1991 and the XXth General
Assembly of the International Union of Geodesy and Geophysics in 1991 Reso-
lutions defining the Geocentric Reference System. It seems, however, that this
modification was not implemented by IERS analysis centers.

In the presentation below, the model is developed in the frame of the IAU Resolu-
tions i.e. general relativity (γ is a PPN (parameterized post-Newtonian) parame-
ter equal to 1 in GRT) using the Barycentric Celestial Reference System (BCRS)
and Geocentric Celestial Reference System (GCRS). However two approaches are
presented for its usage, depending on the choice of coordinate time in the geo-
centric system. It is discussed how the Terrestrial Reference System (TRS) VLBI
station coordinates submitted to the IERS, and the resulting ITRF coordinates
(Chapter 4), should be interpreted in relation to the IAU and IUGG Resolutions.

The ‘step-by-step’ procedure presented here to compute the VLBI time delay is
taken from Eubanks (1991) and the reader is urged to consult that publication
for further details.

11.1.2 Specifications and domain of application

The model is designed primarily for the analysis of VLBI observations of extra-
galactic objects acquired from the surface of the Earth.1 All terms of order 10−13

seconds or larger are included to ensure that the final result is accurate at the
picosecond level. It is assumed that a linear combination of dual frequency mea-
surements is used to remove the dispersive effect of the ionosphere, so that atmo-
spheric effects are only due to the troposphere.

The model is not intended for use with observations of sources in the solar system,
nor is it intended for use with observations made from space-based VLBI, from
either low or high Earth orbit, or from the surface of the Moon (although it would
be suitable with obvious changes for observations made entirely from the Moon).

The GCRS is kinematically non-rotating (not dynamically non-rotating) and, in-
cluded in the precession constant and nutation series, are the effects of the geodesic
precession (∼ 19 mas/y). If needed, Soffel et al. (1991) and Shahid-Saless et al.
(1991) give details of a dynamically inertial VLBI delay equation. At the picosec-
ond level, there is no practical difference for VLBI geodesy and astrometry except
for the adjustment in the precession constant.

1The case of radio sources inside our galaxy has been considered in e.g. Sovers and Fanselow (1987); Klioner (1991)
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11.1.3 The analysis of VLBI measurements: definitions and interpretation of results

In principle, the observable quantities in the VLBI technique are recorded sig-
nals measured in the proper time of the station clocks. On the other hand, the
VLBI model is expressed in terms of coordinate quantities in a given reference
system (see Chapter 10 for a presentation of the different coordinate times used).
For practical considerations, particularly because the station clocks do not pro-
duce ideal proper time (they even are, in general, synchronized and syntonized to
Coordinated Universal Time to some level, i.e. they have the same rate as the
coordinate time Terrestrial Time (TT)), the VLBI delay produced by a correlator
may be considered to be, within the uncertainty aimed at in this chapter, equal
to the TT coordinate time interval dTT between two events: the arrival of a radio
signal from the source at the reference point of the first station and the arrival of
the same signal at the reference point of the second station. Note that we model
here only the propagation delay and do not account for the desynchronization or
desyntonization of the station clocks. From a TT coordinate interval, dTT , one
may derive a Geocentric Coordinate Time (TCG) coordinate interval, dTCG, by
simple scaling: dTCG = dTT /(1 − LG), where LG is given in Table 1.1. In the
following, two different approaches are presented using two different geocentric
coordinate systems with either TCG or TT as coordinate time.

The VLBI model presented below (formula (9)) relates the TCG coordinate in-

terval dTCG = tv2 − tv1 to a baseline ~b expressed in GCRS coordinates (see the
definition of notations in the next section). In the first approach, therefore, if
the VLBI delay was scaled to a TCG coordinate interval, as described above, the
results of the VLBI analysis would be directly obtained in terms of the spatial
coordinates of the GCRS, as is recommended by the IUGG Resolution 2 (1991)
and IAU Resolution B6 (1997), i.e. one would obtain TRS coordinates that are
termed “TCG-compatible,” here denoted xTCG.

In the second approach, if the VLBI model (formula (9)) is used with VLBI delays
as directly provided by correlators (i.e. equivalent to a TT coordinate interval dTT
without transformation to TCG), the baseline ~b is not expressed in GCRS but in
some other coordinate system. The transformation of these coordinates to GCRS
results, at the level of uncertainty considered here, in a simple scaling. The TRS
space coordinates resulting from the VLBI analysis (here denoted xV LBI) are then
termed “TT-compatible” and the TRS coordinates recommended by the IAU and
IUGG resolutions, xTCG, may be obtained a posteriori by xTCG = xV LBI/(1−LG)
(see Petit, 2000).

All VLBI analysis centers submitting results to the IERS have used this second
approach and, therefore, the VLBI space coordinates are of the type xV LBI . For
continuity, an ITRF workshop (November 2000) decided to continue to use this
approach, making it the present conventional choice for submission to the IERS.
Note that the use of TT-compatible space coordinates is also the present con-
ventional choice for SLR analysis results submitted to the IERS. At the ITRF
workshop, it was also decided that the coordinates should not be re-scaled to
xTCG for the computation of ITRF2000 (see Chapter 4) so that the scale of ITRF
realizations since ITRF2000 does not comply with IAU and IUGG resolu-
tions.

11.1.4 The VLBI delay model

Although the delay to be calculated is the time of arrival at station 2 minus the
time of arrival at station 1, it is the time of arrival at station 1 that serves as the
time reference for the measurement. Unless explicitly stated otherwise, all vector
and scalar quantities are assumed to be calculated at t1, the time of arrival at
station 1 including the effects of the troposphere. The VLBI hardware provides
the UTC time tag for this event. For quantities such as ~XJ , V⊕, ~wi, or U it is
assumed that a table (or numerical formula) is available as a function of a given
time argument. The UTC time tag should be transformed to the appropriate
timescale corresponding to the time argument to be used to compute each element
of the geometric model.

The baseline vector ~b is given in the kinematically non-rotating GCRS. It must
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Table 11.1: Notation used in the model

ti the TCG time of arrival of a radio signal at the ith VLBI receiver

Ti the TCB time of arrival of a radio signal at the ith VLBI receiver

tgi the “geometric” TCG time of arrival of a radio signal at the ith VLBI receiver including

the gravitational “bending” delay and the change in the geometric delay caused by the

existence of the atmospheric propagation delay but neglecting the atmospheric

propagation delay itself

tvi the “vacuum” TCG time of arrival of a radio signal at the ith VLBI receiver including

the gravitational delay but neglecting the atmospheric propagation delay and the change

in the geometric delay caused by the existence of the atmospheric propagation delay

δtatmi
the atmospheric propagation TCG delay for the ith receiver = ti − tgi

TiJ the approximation to the TCB time that the ray path to station i passed closest to

gravitating body J

∆Tgrav the differential TCB gravitational time delay

~xi(ti) the GCRS radius vector of the ith receiver at ti
~b ~x2(t1)− ~x1(t1), the GCRS baseline vector at the time of arrival t1
δ~b a variation (e.g. true value minus a priori value) in the GCRS baseline vector

~wi the geocentric velocity of the ith receiver

K̂ the unit vector from the barycenter to the source in the absence of gravitational or

aberrational bending

k̂i the unit vector from the ith station to the source after aberration
~Xi the barycentric radius vector of the ith receiver
~X⊕ the barycentric radius vector of the geocenter
~XJ the barycentric radius vector of the J th gravitating body
~RiJ the vector from the J th gravitating body to the ith receiver
~R⊕J

the vector from the J th gravitating body to the geocenter
~R⊕� the vector from the Sun to the geocenter

N̂iJ the unit vector from the J th gravitating body to the ith receiver
~V⊕ the barycentric velocity of the geocenter

U the gravitational potential at the geocenter, neglecting the effects of the Earth’s mass.

At the picosecond level, only the solar potential need be included in U so that

U = GM�/|~R⊕� |
Mi the rest mass of the ith gravitating body

M⊕ the rest mass of the Earth

c the speed of light

G the Gravitational Constant
Vector magnitudes are expressed by the absolute value sign [|x| = (Σx2

i )
1
2 ]. Vectors and scalars

expressed in geocentric coordinates are denoted by lower case (e.g. ~x and t), while quantities in

barycentric coordinates are in upper case (e.g. ~X and T ). A lower case subscript (e.g. ~xi) denotes
a particular VLBI receiver, while an upper case subscript (e.g. ~xJ) denotes a particular gravitating
body. The SI system of units is used throughout.

be transformed to the rotating terrestrial reference frame defined in Chapter 4 of
the present VLBI Conventions in accordance to the transformations introduced
in Chapter 5.

(a) Gravitational delay2

2The formulas in this section are unchanged from the previous edition of the Conventions. The more advanced theory
in Kopeikin and Schäfer (1999) provides a rigorous physical solution for the light propagation in the field of moving
bodies. For Earth-based VLBI, the formulas in this section and those proposed in Kopeikin and Schäfer (1999) are
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The general relativistic delay, ∆Tgrav, is given for the Jth gravitating body by

∆TgravJ = 2
GMJ

c3
ln
|~R1J |+ ~K · ~R1J

|~R2J |+ ~K · ~R2J

. (11.1)

At the picosecond level it is possible to simplify the delay due to the Earth,
∆Tgrav⊕ , which becomes

∆Tgrav⊕ = 2
GM⊕
c3

ln
|~x1|+ ~K · ~x1

|~x2|+ ~K · ~x2

. (11.2)

The Sun, the Earth and Jupiter must be included, as well as the other planets
in the solar system along with the Earth’s Moon, for which the maximum delay
change is several picoseconds. The major satellites of Jupiter, Saturn and Neptune
should also be included if the ray path passes close to them. This is very unlikely
in normal geodetic observing but may occur during planetary occultations. Note
that in case of observations very close to some massive bodies, extra terms (e.g.
due to the multipole moments and spin of the bodies) should be taken into account
to obtain an uncertainty of 1 ps (see Klioner, 1991).

The effect on the bending delay of the motion of the gravitating body during the
time of propagation along the ray path is small for the Sun but can be several
hundred picoseconds for Jupiter (see Sovers and Fanselow, 1987, page 9). Since
this simple correction, suggested by Sovers and Fanselow (1987) and Hellings
(1986) among others, is sufficient at the picosecond level, it was adapted for the
consensus model. It is also necessary to account for the motion of station 2 during
the propagation time between station 1 and station 2. In this model ~RiJ , the
vector from the Jth gravitating body to the ith receiver, is iterated once, giving

t1J = min

[
t1, t1 −

K̂ · ( ~XJ(t1)− ~X1(t1))

c

]
, (11.3)

so that

~R1J (t1) = ~X1(t1)− ~XJ(t1J ), (11.4)

and

~R2J = ~X2(t1)−
~V⊕
c

(K̂ ·~b)− ~XJ(t1J ). (11.5)

Only this single iteration is needed to obtain picosecond level accuracy for solar
system objects.
~X1(t1) is not tabulated, but can be inferred from ~X⊕(t1) using

~Xi(t1) = ~X⊕(t1) + ~xi(t1), (11.6)

which is of sufficient accuracy for use in equations (11.3) to (11.5), when sub-
stituted into Equation (11.1) but not for use in computing the geometric delay.
The total gravitational delay is the sum over all gravitating bodies including the
Earth,

∆Tgrav =
∑
J

∆TgravJ . (11.7)

(b) Geometric delay

In the barycentric frame the vacuum delay equation is, to a sufficient level of
approximation:

T2 − T1 = −1

c
K̂ · ( ~X2(T2)− ~X1(T1)) + ∆Tgrav. (11.8)

This equation is converted into a geocentric delay equation using known quantities
by performing the relativistic transformations relating the barycentric vectors ~Xi

numerically equivalent with an uncertainty of 0.1 ps (Klioner and Soffel, 2001).
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to the corresponding geocentric vectors ~xi, thus converting Equation (11.8) into
an equation in terms of ~xi. The related transformation between barycentric and
geocentric time can be used to derive another equation relating T2−T1 and t2−t1,
and these two equations can then be solved for the geocentric delay in terms of the
geocentric baseline vector ~b. In the rational polynomial form the total geocentric
vacuum delay is given by

tv2 − tv1 =
∆Tgrav − K̂·~b

c

[
1− (1+γ)U

c2
− |

~V⊕|2

2c2
−

~V⊕·~w2

c2

]
−

~V⊕·~b
c2

(1 + K̂ · ~V⊕/2c)

1 +
K̂·(~V⊕+~w2)

c

. (11.9)

where the PPN parameter γ is equal to 1 in GRT.

Given this expression for the vacuum delay, the total delay is found to be

t2 − t1 = tv2 − tv1 + (δtatm2 − δtatm1) + δtatm1

K̂ · (~w2 − ~w1)

c
. (11.10)

For convenience the total delay can be divided into separate geometric and prop-
agation delays. The geometric delay is given by

tg2 − tg1 = tv2 − tv1 + δtatm1

K̂ · (~w2 − ~w1)

c
, (11.11)

and the total delay can be found at some later time by adding the propagation
delay:

t2 − t1 = tg2 − tg1 + (δtatm2 − δtatm1). (11.12)

The tropospheric propagation delay in Equations (11.11) and (11.12) need not be
from the same model. The estimate in Equation (11.12) should be as accurate
as possible, while the δtatm model in Equation (11.11) need only be accurate to
about an air mass (∼ 10 ns). If Equation (11.10) is used instead, the model
should be as accurate as possible. Note that the tropospheric delay is computed
in the rest frame of each station and can be directly added to the geocentric delay
(Equation (11.11)), at the uncertainty level considered here (see Eubanks, 1991;
Treuhaft and Thomas, 1991).

If δ~b is the difference between the a priori baseline vector and the true baseline,
the true delay may be computed from the a priori delay as follows. If δ~b is less
than roughly three meters, then it suffices to add −(K̂ ·δ~b)/c to the a priori delay.
If this is not the case, however, the a priori delay must be modified by adding

∆(tg2 − tg1) = −
K̂·δ~b
c

1 +
K̂·(~V⊕+~w2)

c

−
~V⊕ · δ~b
c2

. (11.13)

(c) Observations close to the Sun

For observations made very close to the Sun, higher order relativistic time delay
effects become increasingly important. The largest correction is due to the change
in delay caused by the bending of the ray path by the gravitating body described
in Richter and Matzner (1983) and Hellings (1986). The change to ∆Tgrav is

δTgravi =
4G2M2

i

c5

~b · (N̂1i + K̂)

(|~R|1i + ~R1i · K̂)2
, (11.14)

which should be added to the ∆Tgrav in Equation (11.1).

(d) Summary

Assuming that the reference time is the UTC arrival time of the VLBI signal
at receiver 1, and that it is transformed to the appropriate timescale to be used
to compute each element of the geometric model, the following steps are recom-
mended to compute the VLBI time delay.

1. Use Equation (11.6) to estimate the barycentric station vector for receiver
1.
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2. Use Equations (11.3) to (11.5) to estimate the vectors from the Sun, the
Moon, and each planet except the Earth to receiver 1.

3. Use Equation (11.1) to estimate the differential gravitational delay for each
of those bodies.

4. Use Equation (11.2) to find the differential gravitational delay due to the
Earth.

5. Sum to find the total differential gravitational delay, Equation (11.7).

6. Compute the vacuum delay from Equation (11.9).

7. Calculate the aberrated source vector for use in the calculation of the tro-
pospheric propagation delay:

~ki = K̂ +
~V⊕ + ~wi

c
− K̂ K̂ · (~V⊕ + ~wi)

c
. (11.15)

8. Add the geometric part of the tropospheric propagation delay to the vacuum
delay, Equation (11.11).

9. The total delay can be found by adding the best estimate of the tropospheric
propagation delay

t2 − t1 = tg2 − tg1 + [δtatm2(t1 −
K̂ ·~b
c

,~k2)− δtatm1(~k1)]. (11.16)

10. If necessary, apply Equation (11.13) to correct for “post-model” changes in
the baseline by adding Equation (11.13) to the total time delay from step 9.

11.2 Ranging techniques

In a reference system centered on an ensemble of masses, if an electromagnetic
signal is emitted from x1 at coordinate time t1 and is received at x2 at coordinate
time t2, the coordinate time of propagation is given by

t2 − t1 =
|~x2(t2)− ~x1(t1)|

c
+
∑
J

2GMJ

c3
ln

(
rJ1 + rJ2 + ρ

rJ1 + rJ2 − ρ

)
, (11.17)

where the sum is carried out over all bodies J with mass MJ centered at xJ and
where rJ1 = |~x1 − ~xJ |, rJ2 = |~x2 − ~xJ | and ρ = |~x2 − ~x1|.
For near-Earth satellites (e.g. SLR or GNSS), practical analysis is done in the
geocentric frame of reference, and the only body to be considered is the Earth
(Ries et al., 1988). For lunar laser ranging (LLR), which is formulated in the
solar system barycentric reference frame, the Sun and the Earth must be taken
into account, with the contribution of the Moon being of order 1 ps (i.e. about 1
mm for a return trip). Moreover, in the analysis of LLR data, the body-centered
coordinates of an Earth station and a lunar reflector should be transformed into
barycentric coordinates. The transformation of ~r, a geocentric position vector
expressed in the GCRS, to ~rb, the vector expressed in the BCRS, is provided with
an uncertainty below 1 mm by the equation

~rb = ~r

(
1− U

c2

)
− 1

2

(
~V · ~r
c2

)
~V , (11.18)

where U is the gravitational potential at the geocenter (excluding the Earth’s
mass) and ~V is the barycentric velocity of the Earth. A similar equation applies
to the selenocentric reflector coordinates.

In general, however, the geocentric and barycentric systems are chosen so that the
geocentric space coordinates are TT-compatible (position vector ~rTT ) and that the
barycentric space coordinates are TDB-compatible (position vector ~rTDB). The
transformation of ~rTT to ~rTDB is then given, again with an uncertainty below 1
mm, by

~rTDB = ~rTT

(
1− U

c2
− LC

)
− 1

2

(
~V · ~rTT
c2

)
~V , (11.19)

where LC is given in Table 1.1.
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A IAU NFA WG Recommendations

A Recommendations on terminology by the 2003-2006 IAU NFA

Working Group (August 2006)

The final recommendations on terminology associated with the IAU 2000/2006
resolutions of the IAU Working Group on “Nomenclature for fundamental astron-
omy” (NFA) are the following (see Capitaine et al., 2007):

1. Using existing terms (e.g. right ascension) in extended ways for the terminol-
ogy associated with the new paradigm with a clear specification, rather than
introducing new names.

2. Using “equinox based” and “CIO based” for referring to the classical and new
paradigms, respectively.

Comment: the “Celestial/Terrestrial Intermediate Origin” with the acronym
CIO/TIO is proposed here as the updated terminology to replace the
IAU 2000 “Celestial/Terrestrial Ephemeris Origin” with the acronym
CEO/TEO (see below items 3 and 4 and the proposed resolution).

3. Using “intermediate” to describe (i) the moving geocentric celestial reference
system defined in the IAU 2000 resolutions (i.e. containing the CIP and the
CIO), and (ii) the moving terrestrial reference system containing the CIP
and the TIO.

Comment the term “intermediate” has been chosen to specify that these
systems are intermediary systems between the geocentric celestial reference
system and the terrestrial reference system, which are realized by using the
models, constants and procedures that are conventionally accepted; it con-
ventionally separates the instantaneous celestial orientation of the Earth into
components we label polar motion (in the terrestrial reference system) and
precession-nutation (in the celestial reference system).

4. Harmonizing the name of the pole and the origin to “intermediate” and there-
fore changing CEO/TEO to CIO/TIO.

5. Using “system” in a broad sense rather than “frame” in this context of the
intermediary system/frame.

6. Using special designations for particular realizations of the intermediate ce-
lestial reference system.

Comment: this applies for example to “the IAU 2000A system” to desig-
nate the system which is realized by transforming the geocentric celestial
reference system GCRS to the intermediate system using the IAU 2000A
precession-nutation and associated frame biases at J2000.0 (the GCRS be-
ing transformed from the BCRS by using the coordinate transformation
specified in the IAU 2000 Resolution B1.3).

7. Keeping the classical terminology for “true equator and equinox” (or “true
equinox based”) for the classical equatorial system.

8. Choosing “equinox right ascension” (or “RA with respect to the equinox”)
and “intermediate right ascension” (or “CIO right ascension”, or “RA with
respect to the CIO”), for the azimuthal coordinate along the equator in the
classical and new paradigms, respectively. (Note that right ascensions and
declinations with respect to the ICRS are usually designated by αICRS ,
δICRS).

Comment: this is to be specified only once in the presentation of a paper if
there is some risk of misunderstanding. Afterwards, “right ascension” alone
is sufficient.

9. Giving the name “equation of the origins” to the distance between the CIO
and the equinox along the intermediate equator, the sign of this quantity being
such that it represents the CIO right ascension of the equinox, or equivalently,
the difference between the Earth Rotation Angle and Greenwich apparent
sidereal time.
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10. Retaining “apparent places” and “mean places” in the equinox based system.

11. Not introducing “apparent intermediate places” in the CIO based system,
but introducing instead “intermediate places”.

12. Using “ITRF zero-meridian” to designate the plane passing through the geo-
center, ITRF pole and ITRF x-origin and using, if necessary, “TIO merid-
ian” to designate the moving plane passing through the geocenter, the CIP
and the TIO.

13. Fixing the default orientation of the BCRS so that for all practical applica-
tions, unless otherwise stated, the BCRS is assumed to be oriented according
to the ICRS axes.

Comment: Once the BCRS is spatially oriented according to the ICRS, the
spatial GCRS coordinates get an “ICRS-induced” orientation.

14. Re-defining Barycentric Dynamical Time (TDB) as a fixed linear function
of TCB:

TDB = TCB − LB × (JDTCB − T0)× 86400 + TDB0,

where T0 = 2443144.5003725,

and LB =1.550519768 ×10−8 and TDB0 = −6.55×10−5 s are defin-
ing constants.
Additional points

- Considering a terminology associated with other types of apparent places, al-
though it may be required for specific use, has not been considered as being
essential for common astronomical use and is therefore not part of the NFA
WG terminology recommendations.

- No WG consensus having been reached for having strict rules for using or not
using capitals for names for origins, poles and systems, no recommenda-
tion on this issue is proposed by the WG. The policy adopted throughout the
NFA document is to capitalize those terms that are defined in IAU or IUGG
resolutions.
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B IAU Resolutions Adopted at the XXVIth General Assembly (2006)

B IAU Resolutions Adopted at the XXVIth General Assembly

(2006)

B.1 IAU 2006 Resolution B1 on Adoption of the P03 Precession Theory
and Definition of the Ecliptic

The XXVIth International Astronomical Union General Assembly,

Noting

1. the need for a precession theory consistent with dynamical theory,

2. that, while the precession portion of the IAU 2000A precession-nutation model, recom-mended for use
beginning on 1 January 2003 by resolution B1.6 of the XXIVth IAU General Assembly, is based on
improved precession rates with respect to the IAU 1976 precession, it is not consistent with dynamical
theory, and

3. that resolution B1.6 of the XXIVth General Assembly also encourages the development of new expres-
sions for precession consistent with the IAU 2000A precession-nutation model, and

Recognizing

1. that the gravitational attraction of the planets make a significant contribution to the motion of the
Earths equator, making the terms lunisolar precession and planetary precession misleading,

2. the need for a definition of the ecliptic for both astronomical and civil purposes, and

3. that in the past, the ecliptic has been defined both with respect to an observer situated in inertial space
(inertial definition) and an observer comoving with the ecliptic (rotating definition),

Accepts

the conclusions of the IAU Division I Working Group on Precession and the Ecliptic published in Hilton
et al. (2006, Celest. Mech. 94, 351), and

Recommends

1. that the terms lunisolar precession and planetary precession be replaced by precession of the equator
and precession of the ecliptic, respectively,

2. that, beginning on 1 January 2009, the precession component of the IAU 2000A precession-nutation
model be replaced by the P03 precession theory, of Capitaine et al. (2003, A&A, 412, 567-586) for the
precession of the equator (Eqs. 37) and the precession of the ecliptic (Eqs. 38); the same paper provides
the polynomial developments for the P03 primary angles and a number of derived quantities for use in
both the equinox based and CIO based paradigms,

3. that the choice of precession parameters be left to the user, and

4. that the ecliptic pole should be explicitly defined by the mean orbital angular momentum vector of
the Earth-Moon barycenter in the Barycentric Celestial Reference System (BCRS), and this definition
should be explicitly stated to avoid confusion with other, older definitions.

Notes

1. Formulas for constructing the precession matrix using various parameterizations are given in Eqs. 1, 6,
7, 11, 12 and 22 of Hilton et al. (2006). The recommended polynomial developments for the various
parameters are given in Table 1 of the same paper, including the P03 expressions set out in expressions
(37) to (41) of Capitaine et al. (2003) and Tables 3-5 of Capitaine et al. (2005).

2. The time rate of change in the dynamical form factor in P03 is dJ2/dt = −0.3001× 10−9century−1.

B.2 IAU 2006 Resolution B2 on the Supplement to the IAU 2000 Resolu-
tions on reference systems

Recommendation 1. Harmonizing the name of the pole and origin to “intermediate”
The XXVIth International Astronomical Union General Assembly,

Noting

1. the adoption of resolutions IAU B1.1 through B1.9 by the IAU General Assembly of 2000,
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2. that the International Earth Rotation and Reference Systems Service (IERS) and the Standards Of
Fundamental Astronomy (SOFA) activity have made available the models, procedures, data and software
to implement these resolutions operationally, and that the Almanac Offices have begun to implement
them beginning with their 2006 editions, and

3. the recommendations of the IAU Working Group on “Nomenclature for Fundamental Astronomy” (IAU
Transactions XXVIA, 2005), and

Recognizing

1. that using the designation “intermediate” to refer to both the pole and the origin of the new systems
linked to the Celestial Intermediate Pole and the Celestial or Terrestrial Ephemeris origins, defined in
Resolutions B1.7 and B1.8, respectively would improve the consistency of the nomenclature, and

2. that the name “Conventional International Origin” with the potentially conflicting acronym CIO is no
longer commonly used to refer to the reference pole for measuring polar motion as it was in the past by
the International Latitude Service,

Recommends

1. that, the designation “intermediate” be used to describe the moving celestial and terrestrial reference
systems defined in the 2000 IAU Resolutions and the various related entities, and

2. that the terminology “Celestial Intermediate Origin” (CIO) and “Terrestrial Intermediate Origin” (Ter-
restrial Intermediate Origin) be used in place of the previously introduced “Celestial Ephemeris Origin”
(Celestial Ephemeris Origin) and “Terrestrial Ephemeris Origin” (Terrestrial Ephemeris Origin), and

3. that authors carefully define acronyms used to designate entities of astronomical reference systems to
avoid possible confusion.

Recommendation 2. Default orientation of the Barycentric Celestial Reference System (BCRS) and Geocentric
Celestial Reference System (GCRS)
The XXVIth International Astronomical Union General Assembly,

Noting

1. the adoption of resolutions IAU B1.1 through B1.9 by the IAU General Assembly of 2000,

2. that the International Earth Rotation and Reference Systems Service (IERS) and the Standards Of
Fundamental Astronomy (SOFA) activity have made available the models, procedures, data and software
to implement these resolutions operationally, and that the Almanac Offices have begun to implement
them beginning with their 2006 editions,

3. that, in particular, the systems of space-time coordinates defined by IAU 2000 Resolution B1.3 for (a)
the solar system (called the Barycentric Celestial Reference System, BCRS) and (b) the Earth (called
the Geocentric Celestial Reference System, GCRS) have begun to come into use,

4. the recommendations of the IAU Working Group on “Nomenclature for Fundamental Astronomy” (IAU
Transactions XXVIA, 2005), and

5. a recommendation from the IAU Working Group on “Relativity in Celestial Mechanics, Astrometry and
Metrology”,

Recognizing

1. that the BCRS definition does not determine the orientation of the spatial coordinates,

2. that the natural choice of orientation for typical applications is that of the ICRS, and

3. that the GCRS is defined such that its spatial coordinates are kinematically non-rotating with respect
to those of the BCRS,

Recommends

that the BCRS definition is completed with the following: “For all practical applications, unless other-
wise stated, the BCRS is assumed to be oriented according to the ICRS axes. The orientation of the
GCRS is derived from the ICRS-oriented BCRS.”
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B IAU Resolutions Adopted at the XXVIth General Assembly (2006)

B.3 IAU 2006 Resolution B3 on the Re-definition of Barycentric Dynam-
ical Time, TDB

The XXVIth International Astronomical Union General Assembly,
Noting

1. that IAU Recommendation 5 of Commissions 4, 8 and 31 (1976) introduced, as a replacement for
Ephemeris Time (ET), a family of dynamical time scales for barycentric ephemerides and a unique time
scale for apparent geocentric ephemerides,

2. that IAU Resolution 5 of Commissions 4, 19 and 31 (1979) designated these time scales as Barycentric
Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT) respectively, the latter subsequently
renamed Terrestrial Time (TT), in IAU Resolution A4, 1991,

3. that the difference between TDB and TDT was stipulated to comprise only periodic terms, and

4. that Recommendations III and V of IAU Resolution A4 (1991) (i) introduced the coordinate time
scale Barycentric Coordinate Time (TCB) to supersede TDB, (ii) recognized that TDB was a linear
transformation of TCB, and (iii) acknowledged that, where discontinuity with previous work was deemed
to be undesirable, TDB could be used, and

Recognizing

1. that TCB is the coordinate time scale for use in the Barycentric Celestial Reference System,

2. the possibility of multiple realizations of TDB as defined currently,

3. the practical utility of an unambiguously defined coordinate time scale that has a linear relationship with
TCB chosen so that at the geocenter the difference between this coordinate time scale and Terrestrial
Time (TT) remains small for an extended time span,

4. the desirability for consistency with the Teph time scales used in the Jet Propulsion Laboratory (JPL)
solar-system ephemerides and existing TDB implementations such as that of Fairhead & Bretagnon
(A&A 229, 240, 1990), and

5. the 2006 recommendations of the IAU Working Group on “Nomenclature for Fundamental Astronomy”
(IAU Transactions XXVIB, 2006),

Recommends

that, in situations calling for the use of a coordinate time scale that is linearly related to Barycentric
Coordinate Time (TCB) and, at the geocenter, remains close to Terrestrial Time (TT) for an extended
time span, TDB be defined as the following linear transformation of TCB:
TDB = TCB − LB × (JDTCB − T0)× 86400 + TDB0, where T0 = 2443144.5003725,
and LB = 1.550519768× 10−8 and TDB0 = −6.55× 10−5 s are defining constants.

Notes

1. JDTCB is the TCB Julian date. Its value is T0 = 2443144.5003725 for the event 1977 January 1 00h
00m 00s TAI at the geocenter, and it increases by one for each 86400 s of TCB.

2. The fixed value that this definition assigns to LB is a current estimate of LC + LG − LC × LG, where
LG is given in IAU Resolution B1.9 (2000) and LC has been determined (Irwin & Fukushima, 1999,
A&A 348, 642) using the JPL ephemeris DE405. When using the JPL Planetary Ephemeris DE405, the
defining LB value effectively eliminates a linear drift between TDB and TT, evaluated at the geocenter.
When realizing TCB using other ephemerides, the difference between TDB and TT, evaluated at the
geocenter, may include some linear drift, not expected to exceed 1 ns per year.

3. The difference between TDB and TT, evaluated at the surface of the Earth, remains under 2 ms for
several millennia around the present epoch.

4. The independent time argument of the JPL ephemeris DE405, which is called Teph (Standish, A&A,
336, 381, 1998), is for practical purposes the same as TDB defined in this Resolution.

5. The constant term TDB0 is chosen to provide reasonable consistency with the widely used TDB −
TT formula of Fairhead & Bretagnon (1990). n.b. The presence of TDB0 means that TDB is not
synchronized with TT, TCG and TCB at 1977 Jan 1.0 TAI at the geocenter.

6. For solar system ephemerides development the use of TCB is encouraged.
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C IUGG Resolution 2 Adopted at the XXIVth General Assem-

bly (2007)

Resolution 2: Geocentric and International Terrestrial Reference Systems (GTRS and ITRS)

The International Union of Geodesy and Geophysics

Considering

the increasing importance of geodetic reference systems in geosciences, and more generally in numerous
scientific or technical activities, such as satellite navigation systems or geo-information,

Noting

the IUGG Resolution 2 and IAG Resolution 1, both adopted in 1991 at the Vienna General Assembly,
defining the Conventional Terrestrial Reference System (CTRS)

Recognizing

the quality of the work done by several IAG services (IERS, IGS, ILRS, IVS, IDS,. . .) to actually
realize these systems and provide regular access for numerous users within and beyond the geoscience
community,

Endorses

1. the definition of a Geocentric Terrestrial Reference System (GTRS) as system of geocentric space-
time coordinates within the framework of General Relativity, co-rotating with the Earth and related
to Geocentric Celestial Reference System by a spatial rotation which takes into account the Earth
orientation parameters, in agreement with the 2000 IAU resolution B1.3,

2. the definition of the International Terrestrial Reference System (ITRS) as the specific GTRS for which
the orientation is operationally maintained in continuity with past international agreements (so-called
BIH orientation), and

Adopts

the ITRS as preferred system for any scientific application, and

Urges

other communities such as geo-information, or navigation to do the same.
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D IAU Resolutions Adopted at the XXVIIth General Assembly (2009)

D IAU Resolutions Adopted at the XXVIIth General Assembly

(2009)

D.1 IAU 2009 Resolution B2 on IAU 2009 astronomical constants

The XXVII General Assembly of International Astronomical Union,

Considering

1. the need for a self-consistent set of accurate numerical standards for use in astronomy,

2. that improved values of astronomical constants have been derived from recent observations and published
in refereed journals, and

3. that conventional values have been adopted by IAU GA 2000 and IAU GA 2006 resolutions for a number
of astronomical quantities,

Recognizing

1. the continuing need for a set of Current Best Estimates (CBEs) of astronomical constants, and

2. the need for an operational service to the astronomical community to maintain the CBEs

Recommends

1. that the list of previously published constants compiled in the report of the Working Group on Numerical
Standards of Fundamental Astronomy (see http://maia.usno.navy.mil/NSFA/CBE.html) be adopted as
the IAU (2009) System of Astronomical Constants.

2. that Current Best Estimates of Astronomical Constants be permanently maintained as an electronic
document,

3. that, in order to ensure the integrity of the CBEs, IAU Division I develop a formal procedure to adopt
new values and archive older versions of the CBEs, and

4. that the IAU establish within IAU Division I a permanent body to maintain the CBEs for fundamental
astronomy.

D.2 IAU 2009 Resolution B3 on the Second Realization of the Interna-
tional Celestial Reference Frame

The XXVII General Assembly of International Astronomical Union,

noting

1. that Resolution B2 of the XXIII General Assembly (1997) resolved “That, as from 1 January 1998, the
IAU celestial reference system shall be the International Celestial Reference System (ICRS)”,

2. that Resolution B2 of the XXIII General Assembly (1997) resolved that the “fundamental reference
frame shall be the International Celestial Reference Frame (ICRF) constructed by the IAU Working
Group on Reference Frames”,

3. that Resolution B2 of the XXIII General Assembly (1997) resolved that the “That IERS should take
appropriate measures, in conjunction with the IAU Working Group on reference frames, to maintain
the ICRF and its ties to the reference frames at other wavelengths”,

4. that Resolution B7 of the XXIII General Assembly (1997) recommended “high-precision astronomical
observing programs be organized in such a way that astronomical reference systems can be maintained
at the highest possible accuracy for both northern and southern hemispheres”,

5. that Resolution B1.1 of the XIV General Assembly (2000) recognized “the importance of continuing
operational observations made with Very Long Baseline (VLBI) to maintain the ICRF”,

Recognizing

1. that since the establishment of the ICRF, continued VLBI observations of ICRF sources have more than
tripled the number of source observations,

2. that since the establishment of the iCRF, continued VLBI observations of extragalactic sources have
significantly increased the number of sources whose positions are known with a high degree of accuracy,

3. that since the establishment of the ICRF, improved instrumentation, observation strategies, and ap-
plication of state-of-the-art astrophysical and geophysical models have significantly improved both the
data quality and analysis of the entire relevant astrometric and geodetic VLBI data set,
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4. that a working group on the ICRF formed by the International Earth Rotation and Reference Systems
Service (IERS) and the International VLBI Service for Geodesy and Astrometry (IVS), in conjunction
with the IAU Division I Working Group on the Second Realization of the International Celestial Refer-
ence Frame has finalized a prospective second realization of the ICRF in a coordinate frame aligned to
that of the ICRF to within the tolerance of the errors in the latter (see note 1),

5. that the prospective second realization of the ICRF as presented by the IAU Working Group on the
Second Realization of the International Celestial Reference Frame represents a significant improvement
in terms of source selection, coordinate accuracy, and total number of sources, and thus represents a
significant improvement in the fundamental reference frame realization of the ICRS beyond the ICRF
adopted by the XXIII General Assembly (1997),

Resolves

1. that from 01 January 2010 the fundamental astrometric realization of the International Celestial Ref-
erence System (ICRS) shall be the Second Realization of the International Celestial Reference Frame
(ICRF2) as constructed by the IERS/IVS working group on the ICRF in conjunction with the IAU
Division I Working Group on the Second Realization of the International Celestial Reference Frame (see
note 1),

2. that the organizations responsible for astrometric and geodetic VLBI observing programs (e.g. IERS,
IVS) take appropriate measures to continue existing and develop improved VLBI observing and analysis
programs to both maintain and improve ICRF2,

3. that the IERS, together with other relevant organizations continue efforts to improve and densify high
accuracy reference frames defined at other wavelengths and continue to improve ties between these
reference frames and ICRF2.

Note 1: The Second Realization of the International Celestial Reference Frame by Very Long Baseline
Interferometry, Presented on behalf of the IERS / IVS Working Group, Alan Fey and David Gordon
(eds.). (IERS Technical Note ; 35) Frankfurt am Main: Verlag des Bundesamts für Kartographie und
Geodäsie, 2009. See www.iers.org/MainDisp.csl?pid=46-257721 or hpiers.obspm.fr/icrs-pc/.

1New URL www.iers.org/TN35
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Glossary

The glossary includes some terms adopted verbatim from the IAU Division I Working Group “Nomenclature
for Fundamental Astronomy (NFA)” found at http://syrte.obspm.fr/iauWGnfa/NFA Glossary.html.1 For a
complete list of terms see the NFA website. Other terms have been adopted from http://www.iers.org2 and
http://www.ngs.noaa.gov/CORS-Proxy/Glossary/xml/NGS Glossary.xml.3 The definition of the term geoid
was adopted from the website at http://www.ngs.noaa.gov/GEOID/geoid def.html.4 The definition of the
term IAU was adopted from the website at http://www.iau.org.5 The page number listed after each term
indicates the first main occurence of that term.

Glossary

B

barycenter (barycentre) center of mass of the solar system. [NFA Glossary], p. 21.

Barycentric Celestial Reference System (BCRS) a system of barycentric space-time coordinates for the solar
system within the framework of General Relativity with metric tensor specified by the IAU
2000 Resolution B1.3. Formally, the metric tensor of the BCRS does not fix the coordinates
completely, leaving the final orientation of the spatial axes undefined. However, according to
IAU 2006 Resolution B2, for all practical applications, unless otherwise stated, the BCRS is
assumed to be oriented according to the ICRS axes. [NFA Glossary], p. 151.

Barycentric Coordinate Time (TCB) the coordinate time of the BCRS; it is related to Geocentric Coordinate
Time (TCG) and Terrestrial Time (TT) by relativistic transformations that include secular
terms. [NFA Glossary], p. 16.

Barycentric Dynamical Time (TDB) a time scale originally intended to serve as an independent time ar-
gument of barycentric ephemerides and equations of motion. In the IAU 1976 resolutions, the
difference between TDB and TDT was stipulated to consist of only periodic terms, a con-
dition that cannot be satisfied rigorously. The IAU 1991 resolutions introducing barycentric
coordinate time (TCB) noted that TDB is a linear function of TCB, but without explic-
itly fixing the rate ratio and zero point, leading to multiple realizations of TDB. In 2006
TDB was re-defined via a linear transformation of the TCB (See IAU 2006 Resolution B3):
TDB = TCB−LB × (JDTCB −T0)× 86400 +TDB0, where T0 = 2443144.5003725, and LB =
1.550519768×10−8 and TDB0 = −6.55×10−5 s are defining constants. [NFA Glossary], p. 17.

C

Celestial Ephemeris Origin (CEO) the original name for the Celestial Intermediate Origin (CIO) given in
the IAU 2000 resolutions. [NFA Glossary], p. 44.

Celestial Ephemeris Pole (CEP) used from 1984 to 2003 with the IAU 1980 Theory of Nutation as the
reference pole for nutation and polar motion; the axis of figure for the mean surface of a model
Earth in which the free motion has zero amplitude. This pole was originally defined as having no
nearly-diurnal nutation with respect to a space-fixed or Earth-fixed coordinate system and being
realized by the IAU 1980 nutation. It was afterwards determined by using VLBI observations
of celestial pole offsets. It is now replaced by the CIP, which is defined by IAU 2000 Resolution
B1.7. [NFA Glossary], p. 44.

Celestial Intermediate Origin (CIO) origin for right ascension on the intermediate equator in the Celestial
Intermediate Reference System. It is the non-rotating origin in the GCRS that is recommended
by the IAU 2000 Resolution B 1.8, where it was designated the Celestial Ephemeris Origin.
The name Celestial Intermediate Origin was adopted by IAU 2006 Resolution B2. The CIO was
originally set close to the GCRS meridian and throughout 1900-2100 stays within 0.1 arcseconds
of this alignment. [NFA Glossary], p. 44.

Celestial Intermediate Pole (CIP) geocentric equatorial pole defined by IAU 2000 Resolution B1.7 as being
the intermediate pole, in the transformation from the GCRS to the ITRS, separating nutation
from polar motion. It replaced the CEP on 1 January 2003. Its GCRS position results from (i)

1This is marked in the glossary by [NFA Glossary] following the definition of each term.
2This is marked in the glossary by a [2] following the definition of each term.
3This is marked in the glossary by a [3] following the definition of each term.
4This is marked in the glossary by a [4].
5This is marked in the glossary by a [5].
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the part of precession-nutation with periods greater than 2 days, and (ii) the retrograde diurnal
part of polar motion (including the free core nutation, FCN) and (iii) the frame bias. Its ITRS
position results from (i) the part of polar motion which is outside the retrograde diurnal band
in the ITRS and (ii) the motion in the ITRS corresponding to nutations with periods less than
2 days. The motion of the CIP is realized by the IAU precession-nutation plus time-dependent
corrections provided by the IERS. [NFA Glossary], p. 25.

Celestial Intermediate Reference System (CIRS) geocentric reference system related to the GCRS by a
time-dependent rotation taking into account precession-nutation. It is defined by the inter-
mediate equator (of the CIP) and CIO on a specific date (IAU 2006 Resolution B2). It is similar
to the system based on the true equator and equinox of date, but the equatorial origin is at
the CIO. Since the acronym for this system is close to another acronym (namely ICRS), it is
suggested that wherever possible the complete name is used. [NFA Glossary], p. 47.

celestial pole offsets time-dependent corrections to the precession-nutation model, determined by observa-
tions. The IERS provides the celestial pole offsets in the form of the differences, dX and dY ,
of the CIP coordinates in the GCRS with respect to the IAU 2000A precession-nutation model
(i.e. the CIP is realized by the IAU 2000A precession-nutation plus these celestial pole offsets).
In parallel the IERS also provides the offsets, dψ and dε, in longitude and obliquity with respect
to the IAU 1976/1980 precession/nutation model. [NFA Glossary], p. 25.

Chandler wobble a free prograde motion of the Earth’s rotational axis with respect to the Earth’s crust
moving with a period of approximately 435 days. [2], p. 124.

Coordinated Universal Time (UTC) a measure of time that conforms, within approximately 1 s, to the mean
diurnal motion of the Sun and serves as the basis of all civil timekeeping. The term ‘UT’ is
used to designate a member of the family of Universal Time scales (e.g. UTC, UT1). [NFA
Glossary], p. 160.

D

datum (plural datums) A geodetic reference frame. In surveying and geodesy, a datum is a set of
reference points on the Earth’s surface, and (often) an associated model of the shape of the
Earth (reference ellipsoid) used to define a geographic coordinate system. Horizontal datums
are used to describe the location of a point on the Earth’s surface, in latitude and longitude or
other appropriate coordinates. Vertical datums are used to describe site elevations or depths.
[3], p. 32.

DORIS DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), a dual-frequency
Doppler system, is used to determine geodetic positions from analyses of data transmitted from
the sites of artificial satellites. Receivers are on board specialized satellites while the transmitters
are on the ground. The complete set of observations is downloaded from the satellite to the
ground centre for analysis. [2], p. 140.

E

Earth Rotation Angle (ERA) angle measured along the intermediate equator of the Celestial Intermediate
Pole (CIP) between the Terrestrial Intermediate Origin (TIO) and the Celestial Intermediate
Origin (CIO), positively in the retrograde direction. It is related to UT1 by a conventionally
adopted expression in which ERA is a linear function of UT1 (see IAU 2000 Resolution B1.8).
Its time derivative is the Earth’s angular velocity. Previously, it has been referred to as the
stellar angle. [NFA Glossary], p. 44.

ecliptic the plane perpendicular to the mean heliocentric orbital angular momentum vector of the Earth-
Moon barycentre in the BCRS (IAU 2006 Resolution B1). In the past, there was no unique
interpretation; an ecliptic was defined by means of the angles of the precession theory. [NFA
Glossary], p. 22.

ellipsoid In geodesy, a reference ellipsoid is a mathematically-defined surface that approximates the shape
of the Earth or other planetary body. [3], p. 40.

epoch a fixed date used to reckon time for expressing time varying quantities. It is often expressed
in the system of Julian date, marked by the prefix J (e.g. J2000.0), with the Julian year of
365.25 days as unit. The term is also used to designate the date and time of an observation,
e.g. “epoch of observation”, which would be better expressed by “date of observation”. [NFA
Glossary], p. 22.
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equation of the equinoxes (EE) the right ascension of the mean equinox referred to the true equator and
equinox; alternatively the difference between apparent sidereal time and mean sidereal time
(GAST−GMST). [NFA Glossary], p. 60.

equation of the origins (EO) distance between the CIO and the equinox along the intermediate equator; it is
the CIO right ascension of the equinox; alternatively the difference between the Earth Rotation
Angle and Greenwich apparent sidereal time (ERA−GAST). [NFA Glossary], p. 60.

equinox either of the two points at which the ecliptic intersects the celestial equator; also the time
at which the Sun passes through either of these intersection points; i.e., when the apparent
longitude of the Sun is 0deg or 180deg. When required, the equinox can be designated by the
ephemeris of the Earth from which it is obtained (e.g. vernal equinox of DE 405). By 2100 the
equinox will have moved 1.4deg from the ICRS meridian, due to the precession of the equinoxes.
[NFA Glossary], p. 22.

F

free core nutation (FCN) free mode in the motion of the Earth’s rotation axis with respect to the Earth, due
to non-alignment of the rotation axis of the inner core with respect to the mantle; the period is
retrograde diurnal in the terrestrial frame and prograde long-period in the celestial frame. [2],
p. 57.

fundamental arguments a set of mathematical expressions for angles used to describe orbital parameters of
solar system objects used in precession/nutation models. [2], p. 54.

G

geocenter (geocentre) center of mass of the Earth including the atmosphere and oceans. [NFA Glossary],
p. 31.

geocenter motion the motion, on the level of a few mm, of the mass center of the entire Earth system (solid
Earth, ocean and atmosphere) relative to the origin of the ITRF. It is opposite in sign from the
origin translation vector defined in Chapter 4. [2], p. 38.

Geocentric Celestial Reference System (GCRS) a system of geocentric space-time coordinates within the
framework of General Relativity with metric tensor specified by the IAU 2000 Resolution B1.3.
The GCRS is defined such that the transformation between BCRS and GCRS spatial coordinates
contains no rotation component, so that GCRS is kinematically non-rotating with respect to
BCRS. The equations of motion of, for example, an Earth satellite, with respect to the GCRS
will contain relativistic Coriolis forces that come mainly from geodesic precession. The spatial
orientation of the GCRS is derived from that of the BCRS, that is (cf. IAU 2006 Resolution
B2), unless otherwise stated, by the orientation of the ICRS. [NFA Glossary], p. 151.

Geocentric Coordinate Time (TCG) coordinate time of the GCRS based on the SI second. It is related to
Terrestrial Time (TT) by a conventional linear transformation provided by IAU 2000 Resolution
B1.9. [NFA Glossary], p. 16.

geocentric terrestrial reference system (GTRS) a system of geocentric space-time coordinates within the
framework of General Relativity, co-rotating with the Earth, and related to the GCRS by a
spatial rotation which takes into account the Earth orientation parameters. It was adopted by
IUGG 2007 Resolution 2. It replaces the previously defined Conventional Terrestrial Reference
System. [NFA Glossary], p. 34.

geoid the equipotential surface of the Earth’s gravity field which best fits, in a least squares sense,
global mean sea level. [4], p. 18.

Global Positioning System (GPS) The Global Positioning System (GPS), the U.S. component of the Global
Navigation Satellite System (GNSS). The GPS satellites, at an altitude of 20000 km, transmit
down to the Earth carrier signals at two L-band frequencies (1.227 and 1.575 GHz) which are
modulated by a pseudo-random noise code. When four satellites are in view, the user has enough
information to solve for the station position and the clock offset from GPS time. [2], p. 135.

Greenwich Mean Sidereal Time (GMST) Greenwich hour angle of the mean equinox defined by a conven-
tional relationship to Earth Rotation Angle or equivalently to UT1. [NFA Glossary], p. 61.

Greenwich Sidereal Time (GST) Greenwich apparent sidereal time (GAST), the hour angle of the true
equinox from the Terrestrial Intermediate Origin (TIO) meridian (Greenwich or International
meridian). [NFA Glossary], p. 47.
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H

Hipparcos Acronym for High Precision Parallax Collecting Satellite, a scientific mission of the European
Space Agency (ESA), launched in 1989 and operated between 1989 and 1993. It was the first
space experiment devoted to astrometry, the accurate measurement of star positions, parallaxes,
and proper motions. The Hipparcos Catalogue, a high-precision catalogue of more than 100,000
stars, was published in 1997 and is the primary realization of the ICRS at optical wavelengths
(see IAU 2000 Resolution B1.2). [2], p. 21.

I

International Astronomical Union (IAU) Organization of professional astronomers from 90 countries to pro-
mote scientific and educational activities in astronomy. [5], p. 43.

International Atomic Time (TAI) a widely used practical realization of Terrestrial Time (TT) with a fixed
shift from the latter due to historical reasons (see TT); it is a continuous time scale, now
calculated at the Bureau International des Poids et Mesures (BIPM), using data from some
three hundred atomic clocks in over fifty national laboratories in accordance with the definition
of the SI second. [NFA Glossary], p. 151.

International Celestial Reference Frame (ICRF) a set of extragalactic objects whose adopted positions and
uncertainties realize the ICRS axes and give the uncertainties of the axes. It is also the name
of the radio catalog whose 212 defining sources is currently the most accurate realization of
the ICRS. Note that the orientation of the ICRF catalog was carried over from earlier IERS
radio catalogs and was within the errors of the standard stellar and dynamic frames at the
time of adoption. Successive revisions of the ICRF are intended to minimize rotation from its
original orientation. Other realizations of the ICRS have specific names (e.g. Hipparcos Celestial
Reference Frame). [NFA Glossary], p. 22.

International Celestial Reference System (ICRS) the idealized barycentric coordinate system to which ce-
lestial positions are referred. It is kinematically non-rotating with respect to the ensemble of
distant extragalactic objects. It has no intrinsic orientation but was aligned close to the mean
equator and dynamical equinox of J2000.0 for continuity with previous fundamental reference
systems. Its orientation is independent of epoch, ecliptic or equator and is realized by a list of
adopted coordinates of extragalactic sources. [NFA Glossary], p. 21.

International Terrestrial Reference Frame (ITRF) a realization of ITRS, through the realization of its origin,
orientation axes and scale, and their time evolution. [2], p. 35.

International Terrestrial Reference System (ITRS) according to IUGG 2007 Resolution 2, the ITRS is the
specific GTRS for which the orientation is operationally maintained in continuity with past
international agreements (BIH orientation). The co-rotation condition is defined as no residual
rotation with regard to the Earth’s surface, and the geocenter is understood as the center of mass
of the whole Earth system, including oceans and atmosphere (IUGG 1991 Resolution 2). For
continuity with previous terrestrial reference systems, the first alignment was close to the mean
equator of 1900 and the Greenwich meridian. The ITRS was adopted (IUGG 2007 Resolution 2)
as the preferred GTRS for scientific and technical applications and is the recommended system
to express positions on the Earth. [NFA Glossary], p. 34.

J

J2000.0 defined in the framework of General Relativity by IAU 1994 Resolution C7 as being the event
(epoch) at the geocenter and at the date 2000 January 1.5 TT = Julian Date 245 1545.0 TT.
Note that this event has different dates in different time scales. [NFA Glossary], p. 22.

L

length of day (LOD) common term for the difference in the duration of a day as measured by UT1 and 86,400
SI seconds. In practice this quantity is determined by differencing daily values of UT1−UTC.
Units are generally given as ms day−1 [2], p. 123.

LLR LLR (Lunar Laser Ranging) is a space geodetic technique that measures the round-trip travel
times of light pulses between stations on the Earth and five retroreflectors (ca. 2010) on the
surface of the Moon. [2], p. 22.
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M

mean pole the position on the celestial sphere towards which the Earth’s axis points at a particular epoch,
with the oscillations due to precession-nutation removed. [NFA Glossary], p. 21.

modified Julian date (MJD) The Modified Julian Date or Day (MJD) is defined as MJD = JD−2400000.5,
where JD is the Julian Day. Start of the JD count is from 0 at 12 noon 1 January -4712 (4713
BC). [2], p. 151.

N

non-rotating origin (NRO) in the context of the GCRS or the ITRS, the point on the intermediate equator
such that its instantaneous motion with respect to the system (GCRS or ITRS as appropriate)
has no component along the intermediate equator (i.e. its instantaneous motion is perpendicular
to the intermediate equator). It is called the CIO and TIO in the GCRS and ITRS, respectively.
[NFA Glossary], p. 44.

nutation (see precession-nutation), p. 21.

P

permanent tide time-independent gravitational potential exerted on the Earth by the Sun, Moon, and plan-
ets. [3], p. 15.

polar motion the motion of the Earth’s pole with respect to the ITRS. The main components are the Chan-
dlerian free motion with a period of approximately 435 days, and an annual motion. It also
includes sub-daily variations caused by ocean tides and periodic motions driven by gravitational
torques with periods less than two days. Sub-daily variations are not included in the values dis-
tributed by the IERS, and are therefore to be added, after interpolation to the date of interest,
using a model provided by the IERS Conventions. [NFA Glossary], p. 124.

precession-nutation the ensemble of effects of external torques on the motion in space of the rotation axis
of a freely rotating body, or alternatively, the forced motion of the pole of rotation due to those
external torques. In the case of the Earth, a practical definition consistent with the IAU 2000
resolutions is that precession-nutation is the motion of the CIP in the GCRS, including FCN and
other corrections to the standard models: precession is the secular part of this motion plus the
term of 26000-year period and nutation is that part of the CIP motion not classed as precession.
[NFA Glossary], p. 44.

R

regularized UT1 (UT1R) LOD adjusted to remove the effects of zonal solid Earth tides with periods shorter
than 35 days. [2], p. 123.

S

site displacements time-varying changes in the coordinates of a terrestrial site due to local deformations.
[2], p. 113.

SLR SLR (Satellite Laser Ranging) measures the time intervals required for pulses emitted by a laser
transmitter to travel to a satellite and return to the transmitting site. The “range”, or distance
between the satellite and the observing site, is approximately equal to one half of the two-way
travel time multiplied by the speed of light. [2], p. 132.

T

T eph (Teph) independent time argument of JPL ephemerides (Standish, A&A, 336, 381, 1998) that is,
for practical purposes, the same as Barycentric Dynamical Time (TDB). TDB is related to
Barycentric Coordinate Time (TCB) by TDB = TCB−LB × (JDTCB − T0)× 86400 + TDB0,
where T0 = 2443144.5003725, and LB = 1.550519768×10−8 and TDB0 = −6.55×10−5 s are
defining constants. [IAU 2006 Resolution B3], p. 28.

Terrestrial Dynamical Time (TDT) time scale for apparent geocentric ephemerides defined by a 1979 IAU
resolution and in 1991 was replaced by Terrestrial Time (TT). [NFA Glossary], p. 151.
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Terrestrial Ephemeris Origin (TEO) the original name for the Terrestrial Intermediate Origin (TIO) given
in the IAU 2000 resolutions. [NFA Glossary], p. 44.

Terrestrial Intermediate Origin (TIO) origin of longitude in the Intermediate Terrestrial Reference System.
It is the non-rotating origin in the ITRS that is recommended by the IAU 2000 Resolution
B1.8, where it was designated Terrestrial Ephemeris Origin. The name Terrestrial Intermediate
Origin was adopted by IAU 2006 Resolution B2. The TIO was originally set at the ITRF origin
of longitude and throughout 1900-2100 stays within 0.1 mas of the ITRF zero meridian. [NFA
Glossary], p. 44.

Terrestrial Intermediate Reference System (TIRS) a geocentric reference system defined by the intermedi-
ate equator of the CIP and the TIO (IAU 2006 Resolution B2). It is related to the ITRS by
polar motion and s’ (TIO locator). It is related to the Celestial Intermediate Reference System
by a rotation of ERA around the CIP, which defines the common z-axis of the two systems.
Since the acronym for this system is close to another acronym (namely ITRS), it is suggested
that wherever possible the complete name be used. [NFA Glossary], p. 47.

terrestrial reference frame (TRF) realization of the Terrestrial Reference System (TRS), through the real-
ization of its origin, orientation axes and scale, and their time evolution. [2], p. 32.

terrestrial reference system (TRS) a Terrestrial Reference System (TRS) is a spatial reference system co-
rotating with the Earth in its diurnal motion in space. [2], p. 32.

Terrestrial Time (TT) a coordinate time whose mean rate is close to the mean rate of the proper time of
an observer located on the rotating geoid. At 1977 January 1.0 TAI exactly, the value of TT
was 1977 January 1.0003725 exactly. It is related to the Geocentric Coordinate Time (TCG) by
a conventional linear transformation provided by IAU 2000 Resolution B1.9. TT may be used
as the independent time argument for geocentric ephemerides. An accurate realization of TT
is TT (TAI) = TAI + 32.184 seconds. In the past TT was called Terrestrial Dynamical Time
(TDT). [NFA Glossary], p. 151.

U

UT1 angle of the Earth’s rotation about the CIP axis defined by its conventional linear relation to
the Earth Rotation Angle (ERA). It is related to Greenwich apparent sidereal time through
the ERA (see equation of the origins). It is determined by observations (currently from VLBI
observations of the diurnal motions of distant radio sources). UT1 can be regarded as a time
determined by the rotation of the Earth. It can be obtained from the uniform time scale UTC
by using the quantity UT1−UTC, which is provided by the IERS. [NFA Glossary], p. 123.

UT1−UTC difference between the UT1 parameter derived from observation and the uniform time scale
UTC, the latter being currently defined as: UTC = TAI + n, where n is an integer number of
seconds, such that |UT1− UTC| < 0.9 seconds. [NFA Glossary], p. 25.

V

VLBI VLBI (Very Long Baseline Interferometry) is a space geodetic technique that measures the time
differences in the arrival of microwave signals from extragalactic radio sources received at two
or more widely separated radio observatories. [2], p. 21.

Z

zonal tides tides that produce zonal (constant along a circle of latitude) deformations. [3], p. 123.
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